Skip to main content
Log in

Cluster generation under pulsed laser ablation of zinc oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Neutral and cationic Zn n O m clusters of various stoichiometry have been produced by nanosecond laser ablation of ZnO in vacuum and investigated by time-of-flight mass spectrometry. Particular attention was paid to the effect of laser wavelength (in the range from near-IR to UV) on cluster composition. Under 193-nm laser ablation, the charged clusters are essentially substoichiometric with \(\mathrm{Zn}_{n}\mathrm{O}_{n-1}^{+}\) and \(\mathrm{Zn}_{n}\mathrm{O}_{n-3}^{+}\) being the most abundant series. Both sub- and stoichiometric cationic clusters are generated in abundance at 532- and 1064-nm ablation whose composition depends on the cluster size. The reactivity of small stoichiometric \(\mathrm{Zn}_{n}\mathrm{O}_{n}^{+}\) clusters (n<11) toward hydrogen is found to be high, while oxygen-deficient species are less reactive. The neutral plume particles are mainly stoichiometric with Zn4O4 tetramer being a magic cluster. It is suggested that the Zn4O4 loss is the dominant fragmentation channel of large zinc oxide clusters upon electron impact. Plume expansion conditions under ZnO ablation with visible and IR laser pulses are shown to be favorable for stoichiometric cluster formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007)

    Article  Google Scholar 

  3. E.V. Chelnokov, N. Bityurin, I. Ozerov, W. Marine, Appl. Phys. Lett. 89, 171119 (2006)

    Article  ADS  Google Scholar 

  4. L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, W. Marine, J. Appl. Phys. 87, 3829 (2000)

    Article  ADS  Google Scholar 

  5. T. Seto, T. Orii, M. Hirasawa, N. Aya, Thin Solid Films 437, 230 (2003)

    Article  ADS  Google Scholar 

  6. B. Luk’yanchuk, W. Marine, Appl. Surf. Sci. 154–155, 314 (2000)

    Article  Google Scholar 

  7. S.I. Anisimov, B.S. Luk’yanchuk, Phys. Usp. 45, 293 (2002)

    Article  Google Scholar 

  8. A.V. Bulgakov, I. Ozerov, W. Marine, Appl. Phys. A 79, 1591 (2004)

    ADS  Google Scholar 

  9. K.D. Kolenbrander, M.L. Mandich, Phys. Rev. Lett. 65, 2169 (1990)

    Article  ADS  Google Scholar 

  10. I. Ozerov, D. Nelson, A.V. Bulgakov, W. Marine, M. Sentis, Appl. Surf. Sci. 212–213, 349 (2003)

    Article  Google Scholar 

  11. C. Jagadish, S. Pearton (eds.), Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, Oxford, 2006)

    Google Scholar 

  12. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998)

    Article  ADS  Google Scholar 

  13. L.M. Kukreja, A. Rohlfing, P. Misra, F. Hellinkamp, K. Dreiswerd, Appl. Phys. A 78, 641 (2004)

    Article  ADS  Google Scholar 

  14. I. Ozerov, A.V. Bulgakov, D.K. Nelson, R. Castell, W. Marine, Appl. Surf. Sci. 247, 1 (2005)

    Article  ADS  Google Scholar 

  15. F. Aubriet, C. Poleunis, J.-F. Muller, P. Bertrand, J. Mass Spectrom. 41, 527 (2006)

    Article  Google Scholar 

  16. C. McLoughlin, P. Hough, J. Costello, J.-P. Mosnier, Appl. Surf. Sci. 255, 5338 (2009)

    Article  ADS  Google Scholar 

  17. A.V. Bulgakov, M.R. Predtechensky, A.P. Mayorov, Appl. Surf. Sci. 96–98, 159 (1996)

    Article  Google Scholar 

  18. W. Marine, N.M. Bulgakova, L. Patrone, I. Ozerov, Appl. Phys. A 79, 771 (2004)

    Article  ADS  Google Scholar 

  19. A.V. Bulgakov, O.F. Bobrenok, V.I. Kosyakov, Chem. Phys. Lett. 320, 19 (2000)

    Article  ADS  Google Scholar 

  20. A.V. Bulgakov, O.F. Bobrenok, I. Ozerov, W. Marine, S. Giorgio, A. Lassesson, E.E.B. Campbell, Appl. Phys. A 79, 1369 (2004)

    ADS  Google Scholar 

  21. F. Claeyssens, A. Cheesman, S.J. Henley, M.N.R. Ashfold, J. Appl. Phys. 92, 6886 (2002)

    Article  ADS  Google Scholar 

  22. M. Jadraque, C. Domingo, M. Martin, J. Appl. Phys. 104, 024306 (2008)

    Article  ADS  Google Scholar 

  23. A.A. Al-Sunaidi, A.A. Sokol, C.R.A. Catlow, S.M. Woodley, J. Phys. Chem. C 112, 18860 (2008)

    Google Scholar 

  24. A.C. Reber, S.N. Khanna, J.S. Hunjan, M.R. Beltran, Eur. Phys. J. D 43, 221 (2007)

    Article  ADS  Google Scholar 

  25. N.M. Bulgakova, A.V. Bulgakov, Proc. SPIE 6732, 67320G (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Bulgakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgakov, A.V., Evtushenko, A.B., Shukhov, Y.G. et al. Cluster generation under pulsed laser ablation of zinc oxide. Appl. Phys. A 101, 585–589 (2010). https://doi.org/10.1007/s00339-010-5921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5921-8

Keywords

Navigation