Skip to main content
Log in

Analytical theory for the description of powder systems under compression

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a new theoretical approach to modelling some properties of powder systems under compression is presented. This new theoretical route consists of modelling an actual powder system (with particles of unequal size and irregular form) by means of a system of deforming spheres in a simple cubic arrangement and with a certain global porosity that, in some way, makes it equivalent to the actual one. The study of the evolution of the effective contact area between particles and the effective path of the electric or thermal flow through the powder aggregate is the starting point for establishing the equivalence relationship between the actual system and the simple cubic one. In order to exemplify the utility of this new theoretical tool, two classic problems of practical interest have been studied: the electrical conduction in sintered powders and the law governing the powders’ cold die compaction. The proposed solutions to these problems, as well as the equations allowing one to obtain the equivalence relationship, are validated by experiments carried out in actual powder systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. German, Powder Metallurgy and Particulate Materials Processing (MPIF, Metal Powder Industries Federation, Princeton, 2005), p. 192

    Google Scholar 

  2. F.V. Lenel, Powder Metallurgy: Principles and Applications (MPIF, Metal Powder Industries Federation, Princeton, 1980)

    Google Scholar 

  3. R.M. German, Particle Packing Characteristics (MPIF, Metal Powder Industries Federation, Princeton, 1989)

    Google Scholar 

  4. R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)

    Google Scholar 

  5. F. Thümmler, R. Oberacker, Introduction to Powder Metallurgy (The Institute of Materials, London, 1993)

    Google Scholar 

  6. E. Klar, Metals Handbook, Vol. 7: Powder Metallurgy, 9th edn. (ASM, American Society for Metals, Russell Township, 1984)

    Google Scholar 

  7. J. Konishi, K. Naruse, A note on fabric in terms of voids, in Micromechanics of Granular Materials, ed. by M. Satake, J.T. Jenkins (Elsevier, Amsterdam, 1998), pp. 39–46

    Google Scholar 

  8. J.W. Ross, W.A. Miller, G.C. Weatherly, Acta Metall. 30, 203–212 (1982)

    Article  Google Scholar 

  9. A.T. Procopio, A. Zavaliangos, J. Mech. Phys. Solids 53, 1523–1551 (2005)

    Article  MATH  ADS  Google Scholar 

  10. A. Zavaliangos, Int. J. Powder Metall. 38(2), 27–39 (2002)

    Google Scholar 

  11. PM Modnet Computer Modelling Group, Powder Metall. 42(4), 301–311 (1999)

    Article  Google Scholar 

  12. J.M. Montes, J. Cintas, J.A. Rodríguez, E.J. Herrera, J. Mater. Sci. Lett. 22, 1669–1671 (2003)

    Article  Google Scholar 

  13. J.M. Montes, F.G. Cuevas, J. Cintas, Comput. Mater. Sci. 36, 329–337 (2006)

    Article  Google Scholar 

  14. J.M. Montes, F.G. Cuevas, J. Cintas, J.A. Rodríguez, E.J. Herrerra, The equivalent simple cubic system, in Trends in Materials Science Research, ed. by B.M. Caruta (Nova Science, New York, 2005), pp. 157–190

    Google Scholar 

  15. J.M. Montes, F.G. Cuevas, J. Cintas, Mater. Sci. Eng. A 395, 208–213 (2005)

    Article  Google Scholar 

  16. J.M. Montes, F.G. Cuevas, J. Cintas, Granul. Matter 9, 401–406 (2007)

    Article  Google Scholar 

  17. J.C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1998)

    Google Scholar 

  18. H. Fricke, J. Phys. Rev. 24, 575–587 (1924)

    ADS  Google Scholar 

  19. A.L. Loeb, J. Am. Ceram. Soc. 37, 96–99 (1954)

    Google Scholar 

  20. M. Murabayashi, Y. Takahashi, T. Mukaibo, J. Nucl. Sci. Technol. 6, 657–662 (1969)

    Article  Google Scholar 

  21. M.I. Aivazov, I.A. Domashnev, Poroshkovaya Metall. 9, 51–54 (1968) [in Russian]

    Google Scholar 

  22. R. Meyer, Powder Metall. Int. 4, 63–68 (1972)

    Google Scholar 

  23. B. Schulz, High Temp. High Press. 13, 649–660 (1981)

    Google Scholar 

  24. D.S. McLachlan, J. Phys. C, Solid State Phys. 19, 1339–1354 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  25. M.Y. Balshin, Vestn. Metalloprom. 18(16), 124–137 (1938)

    Google Scholar 

  26. R.W. Heckel, Trans. Metall. Soc. 221, 1001–1008 (1961)

    Google Scholar 

  27. A. Kawakita, K.H. Ludde, Powder Technol. 4, 61–68 (1970)

    Article  Google Scholar 

  28. S. Li, P.B. Khosrovabadi, B.H. Kolster, Int. J. Powder Metall. 30(1), 47–57 (1994)

    Google Scholar 

  29. R.D. Ge, Powder Metall. Sci. Technol. 6(3), 20–24 (1995)

    Google Scholar 

  30. R. Panelli, F.A. Filho, Powder Metall. 41(2), 131–133 (1998)

    Google Scholar 

  31. J. Secondi, Powder Metall. 45(3), 213–217 (2002)

    Article  Google Scholar 

  32. MPIF Standard 46, Determination of tap density of metal powders, in Standard Test Methods for Metal Powders and Powder Metallurgy Products (MPIF, Metal Powder Industries Federation, Princeton, 2002)

    Google Scholar 

  33. A.L. Efros, Physics and Geometry of Disorder. Percolation Theory (Mir, Moscow, 1985)

    Google Scholar 

  34. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor & Francis, London, 1994)

    Google Scholar 

  35. J.M. Montes, F.G. Cuevas, J. Cintas, Metall. Mater. Trans. B 38(6), 957–964 (2007)

    Article  Google Scholar 

  36. E.A. Brandes (ed.), Smithells Metals Reference Book, 6th edn. (Butterworth, London, 1983)

    Google Scholar 

  37. P. Ludwik, Elemente der Technologischen Mechanik (Springer, Berlin, 1909), p. 32

    MATH  Google Scholar 

  38. MPIF Standard 45, Determination of compressibility of metal powders, in Standard Test Methods for Metal Powders and Powder Metallurgy Products (MPIF, Metal Powder Industries Federation, Princeton, 2002)

    Google Scholar 

  39. S. Rabin, A.I. Game Programming Wisdom (Charles River Media, Princeton, 2002)

    Google Scholar 

  40. P. Lester, A * Pathfinding for Beginners. www.policyalmanac.org/games/aStarTutorial.htm (as on March 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Montes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes, J.M., Cuevas, F.G. & Cintas, J. Analytical theory for the description of powder systems under compression. Appl. Phys. A 99, 751–761 (2010). https://doi.org/10.1007/s00339-010-5682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5682-4

Keywords

Navigation