Skip to main content
Log in

Femtosecond laser induced nanostructure formation: self-organization control parameters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In self-organized nanostructure formation upon femtosecond laser ablation, the laser polarization is an important control parameter. Experiments on fluoride crystals, using circular and elliptical polarization, study this influence in more detail. For circular polarization, spherical nanoparticles of about 100 nm diameter are formed. With increasing ellipticity, longer and longer ordered chains and linear structures are generated, oriented perpendicular to the long axis of the polarization ellipse. A similar effect occurs when, for circular polarization, the angle of incidence is varied from normal to 45°: the s-component of the incident field, not attenuated by the projection, determines length and orientation of the ordered ripples. However, surface defects like scratches exert an even stronger influence on the ripples orientation than the polarization, resulting in curved structures bending from polarization-controlled to defect-controlled orientation.

Since the structure formation takes place only long after the end of the laser pulse, a certain electrical field memorizer is required to account for this polarization dependence. A promising approach assumes directional atomic surface diffusion anisotropies, arising, e.g. from plasmon-coupled metal–colloid arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  2. H.M. van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955 (1982)

    Article  ADS  Google Scholar 

  3. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197–198, 891 (2002)

    Article  Google Scholar 

  4. T. Tomita, K. Kinoshita, S. Matsuo, S. Hashimoto, Appl. Phys. Lett. 90, 153115 (2007)

    Article  ADS  Google Scholar 

  5. P. Rudolph, K.-W. Brzezinka, R. Wäsche, W. Kautek, Appl. Phys. A 81, 65 (2003)

    Google Scholar 

  6. M. Groenendijk, J. Meijer, J. Laser Appl. 18, 227 (2006)

    Article  Google Scholar 

  7. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 186, 352 (2002)

    Article  ADS  Google Scholar 

  8. J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Phys. Rev. Lett. 82, 2330 (1999)

    Article  ADS  Google Scholar 

  9. P. Sigmund, J. Math. Sci. 8, 1545 (1973)

    Article  Google Scholar 

  10. I. Georgescu, Pattern formation upon femtosecond laser ablation of transparent dielectrics. Diploma Thesis, BTU Cottbus, 2003

  11. J. Reif, F. Costache, M. Bestehorn, in Recent Advances in Laser Processing of Materials, ed. by J. Perrière, E. Millon, E. Fogarassy (Elsevier, Amsterdam, 2006), Chap. 9

    Google Scholar 

  12. O. Varlamova, F. Costache, M. Ratzke, J. Reif, Appl. Surf. Sci. 253, 7932 (2007)

    Article  ADS  Google Scholar 

  13. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 208–209, 71 (2003)

    Google Scholar 

  14. S. Theppakuttai, S. Chen, J. App. Phys. 95, 5049 (2004)

    Article  ADS  Google Scholar 

  15. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 30, 1155 (1983)

    Article  ADS  Google Scholar 

  16. W. Kautek, P. Rudolph, G. Daminelli, J. Krüger, Appl. Phys. A 81, 65 (2005)

    Article  ADS  Google Scholar 

  17. F. Costache, S. Eckert, J. Reif (2008, this volume)

  18. M. Henyk, F. Costache, J. Reif, Appl. Surf. Sci. 197–198, 90 (2002)

    Article  Google Scholar 

  19. R. Bennewitz, C. Günther, M. Reichling, E. Matthias, S. Vijayalakshmi, V. Barnes, N.H. Tolk, Appl. Phys. Lett. 66, 320 (1995)

    Article  ADS  Google Scholar 

  20. E.A. Kotomin, V.N. Kuzovkov, A.I. Popov, Radiat. Eff. Defects Solids 155, 113 (2001)

    Article  Google Scholar 

  21. L.P. Cramer, B.E. Schubert, P.S. Petite, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 97, 074307 (2005)

    Article  ADS  Google Scholar 

  22. L.P. Cramer, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 99, 054305 (2006)

    Article  ADS  Google Scholar 

  23. L.N. Gaier, M. Lein, M.I. Stockman, P.L. Knight, P.B. Corkum, M.Y. Ivanov, G.L. Yudin, J. Phys. B: At. Mol. Opt. Phys. 37, L57 (2004)

    Article  ADS  Google Scholar 

  24. V.R. Bhardawaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 96, 057404 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reif, J., Varlamova, O. & Costache, F. Femtosecond laser induced nanostructure formation: self-organization control parameters. Appl. Phys. A 92, 1019–1024 (2008). https://doi.org/10.1007/s00339-008-4671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4671-3

PACS

Navigation