Abstract
Laboratory experiments were designed to estimate the ingestion rates of the scleractinian coral Stylophora pistillata under varying prey concentrations and feeding regimes and to assess the effect of feeding on the tissue and skeletal growth. Six sets of corals were incubated under two light (80 and 300 µmol photons m−2 s−1) and three feeding levels (none, fed twice, and fed six times per week) using freshly collected zooplankton. Results showed that the number of prey ingested was proportional to prey density, and no saturation of feeding capability was reached. Capture rates varied between 0.5 and 8 prey items 200 polyp−1 h−1. Corals starved for several days ingested more plankton than did fed corals. Fed colonies exhibited significantly higher levels of protein, chlorophyll a, and chlorophyll c 2 per unit surface area than starved colonies. Feeding had a strong effect on tissue growth, increasing it by two to eight times. Calcification rates were also 30% higher in fed than in starved corals. Even moderate levels of feeding enhanced both tissue and skeletal growth, although the processes involved in this enhancement remain to be determined.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Al-Moghrabi S, Allemand D, Jaubert J (1993) Valine uptake by the scleractinian coral Galaxea fascicularis: characterization and effect of light and nutritional status. J Comp Physiol B 163:355–362
Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106
Anthony KRN, Fabricius K (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253
Ayukai T (1991) Standing stock of microzooplankton on coral reefs: a preliminary study. J Plankton Res 4:895–899
Ayukai T (1995) Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14:141–147
Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108
Battey JF, Patton JS (1986) Glycerol translocation in Condylactis gigantea. Mar Biol 95:37–46
Beers JR (1966) Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol Oceanogr 11:520–528
Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228:117–136
Bythell JC (1988) A total nitrogen and carbon budget for the Elkhorn coral Acropora palmata. In: Proc 6th Int Coral Reef Symp, Townsville, Australia, pp 535–540
Clayton WS, Lasker HR (1982) Effects of light and dark treatments on feeding by the reef coral Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 63:269–279
Clayton WS, Lasker HR (1984) Host feeding regime and zooxanthellal photosynthesis in the anemone, Aiptasia pallida (Verrill). Biol Bull 167:590–600
Coma R, Gili JM, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Progr Ser 115:257–270
Coma R, Ribes M, Orejas C, Gili JM (1999) Prey capture by a benthic coral reef hydrozoan. Coral Reefs 18:141–145
Cook CB, D'Elia CF, Muller-Parker G (1988) Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar Biol 98:253–262
Cook CB, Muller-Parker G, Orlandini CD (1994) Ammonium enhancement of dark carbon fixation and nitrogen limitation in zooxanthellae symbiotic with the reef corals Madracis mirabilis and Montastrea annularis. Mar Biol 118:157–165
Di Salvo LH (1971) Ingestion and assimilation of bacteria by two scleractinian coral species. In: Lenhoff HM, Muscatine L, Davis LV (eds) Experimental coelenterate biology. University of Hawaii Press, Honolulu, pp 129-136
Dubinsky Z, Jokiel PL (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324
Dubinsky Z, Stambler N, Ben-Zion M, McCloskey LR, Muscatine L, Falkowski PG (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond B 239:231–246
Edmunds P, Davies PS (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347
Erez J (1978) Vital effect on stable-isotope composition seen in Foraminiferan and coral skeletons. Nature 273:199–202
Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and bioenergetics of symbiotic coral. Bioscience 34:705–709
Farrant PA, Borowitzka MA, Hinde R, King RJ (1987) Nutrition of the temperate Australian soft coral Capnella gaboensis. Mar Biol 95:575–581
Ferrier-Pagès C, Gattuso JP, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113
Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457
Gattuso JP (1985) Features of depth effects on Stylophora pistillata, an hermatypic coral in the Gulf of Aqaba (Jordan, Red Sea). Proc 5th Int Coral Reef Congr 6:95–100
Gili JM, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–321
Glynn PW (1973) Ecology of the Caribbean coral reef. The Porites reef-flat biotope: part II. Plankton community with evidence for depletion. Mar Biol 22:1–21
Grottoli AG (2000) Stable carbon isotopes in coral skeletons. Oceanography 13:93–97
Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41
Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pagès C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding, light and ammonium concentrations. Limnol Oceanogr 47(3):782–790
Heffner RA, Butler MJ, Reilly CK (1996) Pseudoreplication revisited. Ecology 77:2558–2562
Heidelberg KB, Sebens KP, Purcell JE (1997) Effects of prey escape behavior and water flow on prey capture by the scleractinian coral, Meandrina meandrites. Proc 8th Int Coral Reef Symp Panama City 2:1081–1086
Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398
Hopcroft RR, Roff JC, Lombard D (1998) Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar Biol 130:593–604
Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211
Jacques TG, Pilson MEQ (1980) Experimental ecology of the temperate scleractinian coral Astrangia danae. I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol 60:167–178
Jeffrey SW, Humphrey JF (1975) New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194
Johannes RE, Tepley L (1974) Examination of feeding on the reef coral Porites lobata in situ using time lapse photography. In: Proc 2nd Int Coral Reef Symp, Great Barrier Reef Committee, October, pp 127–131
Johannes S, Coles L, Kuenzel NT (1970) The role of zooplankton in the nutrition of some scleractinian corals. Limnol Oceanogr 15:579–586
Johnson AS, Sebens KP (1993) Consequences of a flattened morphology: effects of flow on feeding rates of the scleractinian coral Meandrina meandrites. Mar Ecol Prog Ser 99:99–104
Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: UNESCO (ed) Coral reefs: research methods. UNESCO, Paris, pp 529–541
Klumpp DW, Bayne BL, Hawkins AJS (1992) Nutrition of the giant clam Tridacnas gigas. I. Contribution of filter feeding and photosynthates to respiration and growth. J Exp Mar Biol Ecol 155:105–122
Lasker HR (1981) A comparison of the particulate feeding abilities of three species of gorgonian soft corals. Mar Ecol Prog Ser 5:61–67
Lasker HR, Syron JA, Clayton WS (1982) The feeding response of Hydra viridis: effects of prey density on capture rates. Biol Bull 162:290–298
Lasker HR, Gottfried MD, Coffroth MA (1983) Effects of depth on the feeding capabilities of two octocorals. Mar Biol 73:73–78
Lewis JB (1992) Heterotrophy in corals: zooplankton predation by the hydrocoral Millepora complanata. Mar Ecol Prog Ser 90:251–256
Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243
Marsh JA Jr (1970) Primary productivity of reef building calcareous red algae. Ecology 51:255–263
Marubini F, Atkinson M (1999) Effects of lowered pH and elevated nitrate on coral calcification. Mar Ecol Progr Ser 188:117–121
Marubini F, Thake B (1999) Bicarbonate addition promotes coral growth. Limnol Oceanogr 44:716–720
Muller-Parker G (1985) Effects of feeding regime and irradiance on the photophysiology of the symbiotic sea anemone Aiptasia pulchella. Mar Biol 90:65–74
Muscatine L (1990) The role of symbiotic algae in carbon and energy fluxes in reef corals. In: Dubinsky Z (ed) Coral reef ecosystems. Elsevier, Amsterdam, pp 75–87
Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition. II. δ 15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312
Muscatine L, Porter JW (1977) Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. BioScience 27:454–460
Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611
Ohlhorst SL (1982) Diel migration patterns of demersal reef zooplankton. J Exp Mar Biol Ecol 60:1–15
Porter JW (1974) Zooplankton feeding by the Caribbean reef-building coral Montastrea cavernosa. In: Cameron AM, Campbell BM, Cribb AB, Endean R, Jell JS, Jones OA, Mather P, Talbot FH (eds) Proc 2nd Int Coral Reef Symp Great Barrier Reef Committee, Brisbane, pp 111–125
Ribes M, Coma R, Gili JM (1998) Heterotrophic feeding by gorgonian corals with symbiotic zooxanthellae. Limnol Oceanogr 43:1170-1179
Risk MJ, Sammarco PW, Schwarcz HP (1994) Cross-continental shelf trends in δ13C in coral on the Great Barrier Reef. Mar Ecol Prog Ser 106:121–130
Rosenfeld M, Bresler V, Abelson A (1999) Sediment as a possible source of food for corals. Ecol Lett 2:345–348
Sammarco PW, Risk MJ, Schwarcz HP, Heikoop JM (1999) Cross-continental shelf trends in coral δ 15N on the Great Barrier Reef: further consideration of the reef nutrient paradox. Mar Ecol Prog Ser 180:131–138
Sebens KP (1977) Autotrophic and heterotrophic nutrition of coral reef zoanthids. Proc 3rd Int Coral Reef Symp 1:397–406
Sebens KP (1987) Coelenterata. In: Vernberg FJ, Pandian TJ (eds) Animal energenetics. Academic Press, New York, pp 55–120
Sebens KP (1991) Effects of water flow on coral growth and prey capture. Am Zool 31(5):59A
Sebens KP, Koehl MAR (1984) The feeding ecology of two subtidal rock wall zooplanktivores, Alcyonium siderium and Metridium senile. Mar Biol 81:255–274
Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317
Sebens KP, Grace S, Helmuth B, Maney E, Miles J (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites in a field enclosure. Mar Biol 131:347–360
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
Sorokin YI (1973) On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol Oceanogr 18:380–385
Sorokin YI (1991) Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Aust J Mar Freshwater Res 42:729–741
Stambler N, Popper N, Dubinsky Z, Stimson J (1991) Effects of nutrient enrichment and water motion on the coral Pocillopora damicornis. Pac Sci 45:299–307
Szmant-Froelich A, Pilson MEQ (1984) Effects of feeding frequency and symbiosis with zooxanthellae on nitrogen metabolism and respiration of the coral Astrangia danae. Mar Biol 81:153–162
Tambutté E, Allemand D, Bourge I, Gattuso J-P, Jaubert J (1995). An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459
Titlyanov EA (1991) The stable level of coral primary production in a wide light range. Hydrobiology 216/217:383–387
Titlyanov EA, Titlyanova TV, Tsukahara J, Van Woesik R, Yamazato K (1999) Experimental increases of zooxanthellae density in the coral Stylophora pistillata elucidate adaptive mechanisms for zooxanthellae regulation. Symbiosis 26:347–362
Titlyanov EA, Bil' K, Fomina I, Titlyanova T, Leletkin V, Eden N, Malkin A, Dubinsky Z (2000) Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Mar Biol 137:463–472
Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning. J Exp Mar Biol Ecol 257:163–181
UNESCO (1981) Tenth report of the joint panel on oceanographic tables and standards. UNESCO Tech Pap Mar Sci 36:1–25
Walve J, Larsson U (1999) Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J Plankton Res 21:2309–2321
Wellington GM (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52:311–320
Witting JH (1999) Zooplankton capture and coral growth: the role of heterotrophy in Caribbean reef corals. PhD Diss, Northeastern University, Boston, USA, 285 pp
Yamamuro M, Kayanne H, Minagawa M (1995) Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol Oceanogr 40:617–621
Acknowledgements
This research was supported in part by the National Science Foundation, Biological Oceanography Program, Grant OCE9811577 to K. Sebens and in part by the Centre Scientifique de Monaco. Thanks are due to Cecile Richard for technical assistance and to Dr. H.R. Lasker for improvements to the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ferrier-Pagès, C., Witting, J., Tambutté, E. et al. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata . Coral Reefs 22, 229–240 (2003). https://doi.org/10.1007/s00338-003-0312-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00338-003-0312-7
Keywords
Profiles
- C. Ferrier-Pagès View author profile