Skip to main content

Advertisement

Log in

Fasziale Dysfunktionen

Fascial dysfunction

  • Übersichten
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

Zusammenfassung

Muskelfaszien sind aus mehreren Schichten Kollagenfasern mit dazwischenliegendem Bindegewebe zusammengesetzt. Die Faserschichten sind unterschiedlich angeordnet, um verschiedene mechanische Zugbelastungen möglich zu machen. Eine Veränderung dieser Schichten führt zu Fibrosierungen und damit zum degenerativen Umbau der Faserstruktur wie beispielsweise bei der Dupuytren-Kontraktur an der Hand oder der eosinophilen Fasziitis. Eine Veränderung der zwischen den Kollagenfaserschichten liegenden Bindegewebsschichten führt zu einer Verminderung der Verschiebefähigkeit der Faszienschichten. Im klinischen Alltag ist diese „Verdichtung“ des Bindegewebes wohl die wesentlichste Ursache für einen nichtspezifischen Nacken- oder Kreuzschmerz. Eine Fibrosierung der Kollagenfaserschichten ist ungleich schwerer zu therapieren als eine Schädigung des Bindegewebes.

Abstract

Muscle fascia are composed of several layers of collagen fibers with interposing layers of connective tissue. The fiber layers are arranged in different directions in order to accomodate a variety of mechanical tensile loading forces. Alterations to these layers lead to fascial fibrosis and therefore to degeneration of the fibrous structure, as for example in Dupuytren’s contracture of the hand or eosinophilic fasciitis. Alterations to the connective tissue layers between the collagen fiber layers lead to a reduction in the capacity of gliding of the fascial layers. In the clinical routine this “fascial densification” of the connective tissue is the most prominent cause of nonspecific neck and lower back pain. The therapy of fascial fibrosis of the collagen fiber layers is much more difficult than damage to the connective tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Arkkila PE, Rönnemaa T et al (2001) Biochemical markers of type III and I collagen: association with retinopathy and neuropathy in type 1 diabetic subjects. Diabet Med 18:816–821

    Article  CAS  PubMed  Google Scholar 

  2. Benitez-Aguirre PZ, Craig ME, Duffin CA et al (2012) Plantar fascia thickness is longitudinally associated with Retinopathy and renal dysfunction: A prospective study from adolescence to adulthood. J Diabetes Sci Technol 6:349–355

    Article  Google Scholar 

  3. Bishop JH, Fox JR et al (2016) Ultrasound evaluation of the combined effects of Thoracolumbar fascia injury and movement restriction in a porcine model. PLOS ONE 11(1):e0147393

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carano A, Siciliani G (1996) Effects of continuous and intermittent forces on human fibroblasts in vitro. Eur J Orthod 18:19–26

    Article  CAS  PubMed  Google Scholar 

  5. Cowman MK, Schmidt TA et al (2015) Viscoelastic properties of Hyaluronan in physiological conditions. F1000Res 4:622–635

    PubMed  PubMed Central  Google Scholar 

  6. Dintenfass L (1966) Rheology of complex fluids and some observations on joint lubrication. Fed Proc 25:1054–1060

    CAS  PubMed  Google Scholar 

  7. Eiling E, Bryant AL et al (2007) Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc 15:126–132

    Article  CAS  PubMed  Google Scholar 

  8. Fede C, Albertin G et al (2016) Expression of the endocannabinoid receptors in human fascial tissue. Eur J Histochem 60:130–134

    Article  Google Scholar 

  9. Gatej I, Popa M, Rinaudo M (2005) Role of the pH on hyaluronan behavior in aqueous solution. Biomacromolecules 6:61–67

    Article  CAS  PubMed  Google Scholar 

  10. Langevin HM, Bouffard NA et al (2005) Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo. Am J Physiol Cell Physiol 288:747–756

    Article  Google Scholar 

  11. Langevin HM, Fox JR et al (2011) Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord 12:203–214

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee H, Petrofsky JS et al (2013) A greater reduction of anterior cruciate ligament elasticity in women compared to men as a result of delayed onset muscle soreness. Tohoku J Exp Med 231:111–115

    Article  PubMed  Google Scholar 

  13. Li Y, Fessel G, Georgiadis M, Snedeker JG (2013) Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol 32:169–177

    Article  CAS  PubMed  Google Scholar 

  14. McPartland JM (2008) Expression of the endocannabinoid system in fibroblasts and myofascial tissues. J Bodyw Mov Ther 12:169–182

    Article  PubMed  Google Scholar 

  15. Pavan PG, Stecco A, Stern R, Stecco C (2014) Painful connections: Densification versus fibrosis of fascia. Curr Pain Headache Rep 18:441–444

    Article  PubMed  Google Scholar 

  16. Pavan PG, Pahera P, Stecco C, Natali AN (2015) Biomechanical behavior of human crural fascia in anterior and posterior regions of the lower limb. Med Biol Eng Comput 53:951–959

    Article  PubMed  Google Scholar 

  17. Pipelzadeh MH, Naylor IL (1998) The in vitro enhancement of rat myofibroblast contractility by alterations to the pH of the physiological solution. Eur J Pharmacol 357:257–259

    Article  CAS  PubMed  Google Scholar 

  18. Stecco A, Meneghini A, Stern R, Stecco C, Imamura M (2014) Ultrasonography in myofascial neck pain: randomized clinical trial for diagnosis and follow-up. Surg Radiol Anat 36:243–253

    Article  PubMed  Google Scholar 

  19. Slimani L, Micol D et al (2012) The worsening of tibialis anterior muscle atrophy during recovery post-immobilization correlates with enhanced connective tissue area, proteolysis, and apoptosis. Am J Physiol Endocrinol Metab 303:1335–1347

    Article  Google Scholar 

  20. Tadmor R, Chen N, Israelachvili JN (2002) Thin film rheology and lubricity of hyaluronic acid solutions at a normal physiological concentration. J Biomed Mater Res 61:514–523

    Article  PubMed  Google Scholar 

  21. Trabold O, Wagner S et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509

    Article  PubMed  Google Scholar 

  22. Trindade VL, Martins PA et al (2012) Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. J Biomech 45:199–201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. von Heymann.

Ethics declarations

Interessenkonflikt

W. von Heymann und C. Stecco geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Der vorliegende Beitrag basiert auf einem Vortrag von Prof. Carla Stecco vom 4.6.2016, gehalten im Rahmen der Jahrestagung des Vereins „Muskel und Schmerz“ in Bernried am Starnberger See.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Heymann, W., Stecco, C. Fasziale Dysfunktionen. Manuelle Medizin 54, 303–306 (2016). https://doi.org/10.1007/s00337-016-0172-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-016-0172-1

Schlüsselwörter

Keywords

Navigation