Skip to main content
Log in

GNAI3, GNAT2, AMPD2, GSTM are clustered in 120 kb of Chinese hamster Chromosome 1q

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We studied a polygenic region located on Chromosome (Chr) lq in Chinese hamster cells that is coamplified along with the AMPD2 gene. Previous sequence analysis identified both members of the GSTM family and the GNAI3 gene within a cloned 120-kb region surrounding the AMPD2 locus. We show here that the GNAT2 gene, which is inactive in the fibroblastic cells, lies within the 20 kb separating the transcriptionally active GNAI3 and AMPD2 genes. We map most gene ends by sequence comparison with human homologs; one is inferred from the presence of an unmethylated CpG island. This Chinese hamster locus corresponds to a region of conserved linkage between human Chr 1 (locus lp 13) and mouse Chr 3 (position 52.5 cM), where Gnai-3 and Gnat-2 have been mapped. The AMPD2 gene is presently unlocalized in human genome; its proposed position on mouse Chr 3 is at 53.4 cM. Our results, obtained by physical mapping, strongly suggest that the order and possibly the tight linkage of these genes are conserved on all three genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). A basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  • Baron, B., Fernandez, M.-A., Toledo, F., LeRoscouët, D., Mayau, V., Martin, N., Buttin, G., Debatisse, M. (1994). The highly conserved Chinese hamster GNA13 gene maps less than 60 kb from the AMPD2 gene and lacks the intronic U6 snRNA presents in its human counterpart. Genomics 24, 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Bausch-Jurken, M.T., Mahnke-Zizelman, D.K., Morisaki, T., Sabina, R.L. (1992). Molecular cloning of AMPD deaminase isoform L. J. Biol. Chem. 267, 22407–22413.

    PubMed  CAS  Google Scholar 

  • Bird, A.P. (1986). CpG islands and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A.P. (1987). CpG islands as gene markers in the vertebrate nucleus. Trends Genet. 3, 342–347.

    Article  CAS  Google Scholar 

  • Brison, O. (1993). Gene amplification and tumor progression. Biochim. Biophys. Acta 1155, 25–41.

    PubMed  CAS  Google Scholar 

  • Debatisse, M., Berry, M., Buttin, G. (1982). Stepwise isolation and properties of unstable Chinese hamster cell variants that overproduce adenylate deaminase. Mol. Cell. Biol. 2, 1346–1353.

    PubMed  CAS  Google Scholar 

  • Debatisse, M., Robert de Saint Vincent, B., Buttin, G. (1984). Expression of several amplified genes in an adenylate-deaminase overproducing variant of Chinese hamster fibroblasts. EMBO J. 3, 3123–3127.

    PubMed  CAS  Google Scholar 

  • Debatisse, M., Hyrien, O., Petit-Koskas, E., Robert de Saint Vincent, B., Buttin, G. (1986). Segregation and rearrangement of coamplified genes in different lineages of mutant cells that overproduce adenylate deaminase. Mol. Cell. Biol. 6, 1776–1781.

    PubMed  CAS  Google Scholar 

  • Debatisse, M., Saito, I., Buttin, G., Stark, G.R. (1988). Preferential amplification of rearranged sequences near amplified adenylate deaminase genes. Mol. Cell. Biol. 8, 17–24.

    PubMed  CAS  Google Scholar 

  • GCG (1996). Program Manual for the Wisconsin Package, Version 8, September 1996, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin 53711, USA.

    Google Scholar 

  • Genome Data Base (1995). Data used in preparing this paper were derived from the GDB(TM) Human Genome Data Base accessed on November 18, 1995.

  • Hamlin, J.L., Dijkwel, P.A. (1995). On the nature of replication origins in higher eukaryotes. Curr. Opin. Genet. Dev. 5, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Heinikoff, S. (1984). Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28, 351–359.

    Article  Google Scholar 

  • Huberman, J.A. (1995). Prokaryotic and eukaryotic replicons. Cell 82, 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Kellems, R.E. (1992). Gene amplification in mammalian cells: a comprehensive guide. (New York: Marcel Dekker, Inc.).

    Google Scholar 

  • Kingsmore, S.F., Moseley, W.S., Watson, M.L., Sabina, R.L., Holmes, E.W., Seidin, M.F. (1990). Long-range restriction site mapping of a synthenic segment conserved between human chromosome 1 and mouse chromosome 3. Genomics 7, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, F., Gundersen, G., Lopez, R., Prydz, H. (1992). CpG islands as gene markers in the human genome. Genomics 13, 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  • Lledo, P.M., Homburger, V., Bockaert, J., Vincent, J.-D. (1992). Differential G-protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 8, 455–463.

    Article  PubMed  CAS  Google Scholar 

  • Lunel, C, Buttin, G., Robert de Saint Vincent, B. (1992). A seryl-tRNA synthetase gene is coamplified with the adenylate deaminase 2 gene in coformycin resistant Chinese hamster fibroblasts. Nucleic Acids Res. 20, 2597.

    Article  PubMed  CAS  Google Scholar 

  • Merkler, D.J., Wali, A.S., Taylor, J., Schramm, V.L. (1989). AMP deaminase from yeast. J. Biol. Chem. 264, 21422–21430.

    PubMed  CAS  Google Scholar 

  • Mineo, I., Clarke, P.R.H., Sabina, R., Holmes, E.W. (1990). A novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5′ splice donor site not present in the primary transcript of AMPD1. Mol. Cell. Biol. 10, 5271–5278.

    PubMed  CAS  Google Scholar 

  • Morris, A.T., Fong, S. (1993). Characterization of the gene for human cone transducin alpha subunit (GNAT2). Genomics 17, 442–448.

    Article  PubMed  CAS  Google Scholar 

  • Mouse Genome Database (MGD) (July, 1995). Mouse Genome Informatics Project, The Jackson Laboratory, Bar Harbor, Maine. World Wide Web (URL: http://www.informatics.jag.org).

    Google Scholar 

  • Mural, R.J., Einstein, J.R., Guan, X., Mann, R.C., Uberbacher, E.C. (1992). An artificial intelligence approach to DNA sequence feature recognition. Trends Biotechnol. 10, 66–69.

    Article  PubMed  CAS  Google Scholar 

  • Robert de Saint Vincent, B., Hyrien, O., Debatisse, M., Buttin, G. (1990). Coamplification of µ class glutathione S-transferase genes and an adenylate deaminase gene in coformycin-resistant Chinese hamster fibroblasts. Eur. J. Biochem. 193, 19–24.

    Article  Google Scholar 

  • Saito, I., Groves, R., Giulotto, E., Rolfe, M., Stark, G.R. (1989). Evolution and stability of chromosomal DNA coamplified with the CAD gene. Mol. Cell. Biol. 9, 2445–2452.

    PubMed  CAS  Google Scholar 

  • Toledo, F., Smith, K.A., Buttin, G., Debatisse, M. (1992). The evolution of the amplified adenylate deaminase 2 domains in Chinese hamster cells suggests the sequential operation of different mechanisms of DNA amplification Mutat. Res. 276, 261–673.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, B., Fernandez, M.A., Carignon, S. et al. GNAI3, GNAT2, AMPD2, GSTM are clustered in 120 kb of Chinese hamster Chromosome 1q. Mammalian Genome 7, 429–432 (1996). https://doi.org/10.1007/s003359900127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900127

Keywords

Navigation