Skip to main content

Advertisement

Log in

Genetics of aging bone

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

With aging, the skeleton experiences a number of changes, which include reductions in mass and changes in matrix composition, leading to fragility and ultimately an increase of fracture risk. A number of aspects of bone physiology are controlled by genetic factors, including peak bone mass, bone shape, and composition; however, forward genetic studies in humans have largely concentrated on clinically available measures such as bone mineral density (BMD). Forward genetic studies in rodents have also heavily focused on BMD; however, investigations of direct measures of bone strength, size, and shape have also been conducted. Overwhelmingly, these studies of the genetics of bone strength have identified loci that modulate strength via influencing bone size, and may not impact the matrix material properties of bone. Many of the rodent forward genetic studies lacked sufficient mapping resolution for candidate gene identification; however, newer studies using genetic mapping populations such as Advanced Intercrosses and the Collaborative Cross appear to have overcome this issue and show promise for future studies. The majority of the genetic mapping studies conducted to date have focused on younger animals and thus an understanding of the genetic control of age-related bone loss represents a key gap in knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham AC, Agarwalla A, Yadavalli A, McAndrew C, Liu JY, Tang SY (2015) Multiscale predictors of femoral neck in situ strength in aging women: contributions of BMD, cortical porosity, reference point indentation, and nonenzymatic glycation. J Bone Miner Res 30(12):2207–2214 (Epub 2015/06/11)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackert-Bicknell CL, Karasik D, Li Q, Smith RV, Hsu YH, Churchill GA et al (2010) Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. J Bone Miner Res 25(8):1808–1820 (Epub 2010/03/05)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackert-Bicknell CL, Demissie S, Tsaih SW, Beamer WG, Cupples LA, Paigen BJ et al (2012) Genetic variation in TRPS1 may regulate hip geometry as well as bone mineral density. Bone 50(5):1188–1195 (Epub 2012/02/07)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackert-Bicknell CL, Anderson LC, Sheehan S, Hill WG, Chang B, Churchill GA et al (2015) Aging research using mouse models. Curr Protoc Mouse Biol 5(2):95–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams DJ, Ackert-Bicknell CL (2015) Genetic regulation of bone strength: a review of animal model studies. Bonekey Rep 4:714

    Article  PubMed  Google Scholar 

  • Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34(3):443–453

    Article  CAS  PubMed  Google Scholar 

  • Alam I, Koller DL, Sun Q, Roeder RK, Canete T, Blazquez G et al (2011) Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility. Bone 48(5):1169–1177 (Epub 2011/02/22)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam I, Koller DL, Canete T, Blazquez G, Mont-Cardona C, Lopez-Aumatell R et al (2015) Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone 81:417–426

    Article  PubMed  Google Scholar 

  • Alonso N, Ralston SH (2014) Unveiling the mysteries of the genetics of osteoporosis. J Endocrinol Invest 37(10):925–934 (Epub 2014/08/26)

    Article  CAS  PubMed  Google Scholar 

  • Barak MM, Lieberman DE, Hublin JJ (2011) A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone 49(6):1141–1151 (Epub 2011/09/07)

    Article  PubMed  Google Scholar 

  • Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18(5):397–403 (Epub 1996/05/01)

    Article  CAS  PubMed  Google Scholar 

  • Beamer WG, Shultz KL, Donahue LR, Churchill GA, Sen S, Wergedal JR et al (2001) Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 16(7):1195–1206 (Epub 2001/07/14)

    Article  CAS  PubMed  Google Scholar 

  • Beamer WG, Shultz KL, Coombs HF 3rd, DeMambro VE, Reinholdt LG, Ackert-Bicknell CL et al (2011) BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat. J Bone Miner Res 26(1):88–99 (Epub 2010/08/06)

    Article  CAS  PubMed  Google Scholar 

  • Belknap JK (1998) Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav Genet 28(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Bishop N, Sprigg A, Dalton A (2007) Unexplained fractures in infancy: looking for fragile bones. Arch Dis Child 92(3):251–256 (Epub 2007/03/06)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301(5):513–521

    Article  CAS  PubMed  Google Scholar 

  • Blume SW, Curtis JR (2011) Medical costs of osteoporosis in the elderly medicare population. Osteoporos Int 22(6):1835–1844

    Article  CAS  PubMed  Google Scholar 

  • Boskey AL, Robey PG (2013) The composition of bone. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 8th edn. Wiley-Blackwell, New York, pp 49–58

    Chapter  Google Scholar 

  • Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18(6):1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Boskey AL, Donnelly E, Boskey E, Spevak L, Ma Y, Zhang W et al (2016) Examining the relationships between bone tissue composition, compositional heterogeneity and fragility fracture: a matched case controlled FTIRI study. J Bone Miner Res 31(5):1070–1081

    Article  CAS  PubMed  Google Scholar 

  • Bouxsein ML, Uchiyama T, Rosen CJ, Shultz KL, Donahue LR, Turner CH et al (2004) Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J Bone Miner Res 19(4):587–599

    Article  CAS  PubMed  Google Scholar 

  • Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. JAMA 302(14):1573–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodt MD, Pelz GB, Taniguchi J, Silva MJ (2003) Accuracy of peripheral quantitative computed tomography (pQCT) for assessing area and density of mouse cortical bone. Calcif Tissue Int 73(4):411–418 (Epub 2004/01/28)

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL MApping with R/qtl. Springer, New York

    Book  Google Scholar 

  • Burgeson RE, Nimni ME (1992) Collagen types. Molecular structure and tissue distribution. Clin Orthop Relat Res 282:250–272

    PubMed  Google Scholar 

  • Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The diversity outbred mouse population. Mamm Genome 23(9–10):713–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtland HW, Nasser P, Goldstone AB, Spevak L, Boskey AL, Jepsen KJ (2008) Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition. Calcif Tissue Int 83(5):342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake MT, Khosla S (2012) Male osteoporosis. Endocrinol Metab Clin North Am 41(3):629–641 (Epub 2012/08/11)

    Article  PubMed  PubMed Central  Google Scholar 

  • Edderkaoui B, Baylink DJ, Beamer WG, Wergedal JE, Dunn NR, Shultz KL et al (2006) Multiple genetic loci from CAST/EiJ chromosome 1 affect vBMD either positively or negatively in a C57BL/6J background. J Bone Miner Res 21(1):97–104 (Epub 2005/12/16)

    Article  CAS  PubMed  Google Scholar 

  • Edderkaoui B, Baylink DJ, Beamer WG, Shultz KL, Wergedal JE, Mohan S (2007a) Genetic regulation of femoral bone mineral density: complexity of sex effect in chromosome 1 revealed by congenic sublines of mice. Bone 41(3):340–345 (Epub 2007/07/10)

    Article  CAS  PubMed  Google Scholar 

  • Edderkaoui B, Baylink DJ, Beamer WG, Wergedal JE, Porte R, Chaudhuri A et al (2007b) Identification of mouse Duffy antigen receptor for chemokines (Darc) as a BMD QTL gene. Genome Res 17(5):577–585 (Epub 2007/04/10)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501 (Epub 2012/04/17)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farber CR, van Nas A, Ghazalpour A, Aten JE, Doss S, Sos B et al (2009) An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association. J Bone Miner Res 24(1):105–116 (Epub 2008/09/05)

    Article  CAS  PubMed  Google Scholar 

  • Farber CR, Bennett BJ, Orozco L, Zou W, Lira A, Kostem E et al (2011) Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 7(4):e1002038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson VL, Ayers RA, Bateman TA, Simske SJ (2003) Bone development and age-related bone loss in male C57BL/6J mice. Bone 33(3):387–398 (Epub 2003/09/19)

    Article  PubMed  Google Scholar 

  • Flint J, Mackay TF (2009) Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res 19(5):723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JC, Keaveny TM (2001) Trabecular eccentricity and bone adaptation. J Theor Biol 212(2):211–221 (Epub 2001/09/05)

    Article  CAS  PubMed  Google Scholar 

  • French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA et al (2015) Diversity outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ Health Perspect 123(3):237–245

    CAS  PubMed  Google Scholar 

  • Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P et al (2014) Quantitative trait locus mapping methods for diversity outbred mice. G3 (Bethesda) 4(9):1623–1633

    Article  Google Scholar 

  • Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22(8):1197–1207 (Epub 2007/05/10)

    Article  PubMed  Google Scholar 

  • Gonzales NM, Palmer AA (2014) Fine-mapping QTLs in advanced intercross lines and other outbred populations. Mamm Genome 25(7–8):271–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen C, Spuhler K (1984) Development of the National Institutes of Health genetically heterogeneous rat stock. Alcohol Clin Exp Res 8(5):477–479

    Article  CAS  PubMed  Google Scholar 

  • Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, van der Ham F et al (2005) Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37(6):825–832 (Epub 2005/09/06)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YH, Kiel DP (2012) Clinical review: genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab 97(10):E1958–E1977 (Epub 2012/09/12)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs CR (2000) The mechanobiology of cancellous bone structural adaptation. J Rehabil Res Dev 37(2):209–216 (Epub 2000/06/13)

    CAS  PubMed  Google Scholar 

  • Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MC (2015) Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res 30(6):951–966

    Article  PubMed  PubMed Central  Google Scholar 

  • Jilka RL (2013) The relevance of mouse models for investigating age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 68(10):1209–1217 (Epub 2013/05/22)

    Article  PubMed  PubMed Central  Google Scholar 

  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333 (Epub 2001/07/12)

    Article  CAS  PubMed  Google Scholar 

  • Keber R, Motaln H, Wagner KD, Debeljak N, Rassoulzadegan M, Acimovic J et al (2011) Mouse knockout of the cholesterogenic cytochrome P450 lanosterol 14alpha-demethylase (Cyp51) resembles Antley-Bixler syndrome. J Biol Chem 286(33):29086–29097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller DL, Schriefer J, Sun Q, Shultz KL, Donahue LR, Rosen CJ et al (2003) Genetic effects for femoral biomechanics, structure, and density in C57BL/6J and C3H/HeJ inbred mouse strains. J Bone Miner Res 18(10):1758–1765 (Epub 2003/10/31)

    Article  CAS  PubMed  Google Scholar 

  • Kuhn LT, Grynpas MD, Rey CC, Wu Y, Ackerman JL, Glimcher MJ (2008) A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages. Calcif Tissue Int 83(2):146–154 (Epub 2008/08/08)

    Article  CAS  PubMed  Google Scholar 

  • Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16(11):1937–1947 (Epub 2001/11/08)

    Article  CAS  PubMed  Google Scholar 

  • Lauretani F, Bandinelli S, Griswold ME, Maggio M, Semba R, Guralnik JM et al (2008) Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res 23(3):400–408 (Epub 2007/11/14)

    Article  PubMed  Google Scholar 

  • Leali PT, Muresu F, Melis A, Ruggiu A, Zachos A, Doria C (2011) Skeletal fragility definition. Clin Cases Miner Bone Metab 8(2):11–13 (Epub 2012/03/31)

    PubMed  PubMed Central  Google Scholar 

  • Leamy LJ, Kelly SA, Hua K, Farber CR, Pomp D (2013) Quantitative trait loci for bone mineral density and femoral morphology in an advanced intercross population of mice. Bone 55(1):222–229 (Epub 2013/03/15)

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy R, Mott RF, Iraqi FA, Gabet Y (2015) Collaborative cross mice in a genetic association study reveal new candidate genes for bone microarchitecture. BMC Genomics 16(1):1013 (Epub 2015/11/28)

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CT, Karasik D, Zhou Y, Hsu YH, Genant HK, Broe KE et al (2012) Heritability of prevalent vertebral fracture and volumetric bone mineral density and geometry at the lumbar spine in three generations of the Framingham study. J Bone Miner Res 27(4):954–958

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch K, Pei M (2014) Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis 10(3):289–298 (Epub 2014/12/09)

    Article  PubMed  PubMed Central  Google Scholar 

  • Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21(6):369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marini JC, Reich A, Smith SM (2014) Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr 26(4):500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259 (Epub 1996/05/18)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin RB, Atkinson PJ (1977) Age and sex-related changes in the structure and strength of the human femoral shaft. J Biomech 10(4):223–231 (Epub 1977/01/01)

    Article  CAS  PubMed  Google Scholar 

  • Maruyama N, Shibata Y, Mochizuki A, Yamada A, Maki K, Inoue T et al (2015) Bone micro-fragility caused by the mimetic aging processes in alpha-klotho deficient mice: in situ nanoindentation assessment of dilatational bands. Biomaterials 47:62–71 (Epub 2015/02/16)

    Article  CAS  PubMed  Google Scholar 

  • Meakin LB, Sugiyama T, Galea GL, Browne WJ, Lanyon LE, Price JS (2013) Male mice housed in groups engage in frequent fighting and show a lower response to additional bone loading than females or individually housed males that do not fight. Bone 54(1):113–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesner LD, Ray B, Hsu YH, Manichaikul A, Lum E, Bryda EC et al (2014) Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. J Clin Invest 124(6):2736–2749 (Epub 2014/05/03)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittra E, Rubin C, Qin YX (2005) Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech 38(6):1229–1237 (Epub 2005/05/03)

    Article  PubMed  Google Scholar 

  • Moayyeri A, Hammond CJ, Hart DJ, Spector TD (2012) Effects of age on genetic influence on bone loss over 17 years in women: the Healthy Ageing Twin Study (HATS). J Bone Miner Res 27(10):2170–2178 (Epub 2012/05/17)

    Article  PubMed  Google Scholar 

  • Piscopo DM, Johansen EB, Derynck R (2009) Identification of the GATA factor TRPS1 as a repressor of the osteocalcin promoter. J Biol Chem 284(46):31690–31703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrimsson B et al (2006) Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. J Exp Biol 209(Pt 1):57–65 (Epub 2005/12/16)

    Article  CAS  PubMed  Google Scholar 

  • Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM et al (2012) Dilatational band formation in bone. Proc Natl Acad Sci USA 109(47):19178–19183 (Epub 2012/11/07)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31(5):629–662

    Article  CAS  PubMed  Google Scholar 

  • Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L et al (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23(2):205–214 (Epub 2007/10/17)

    Article  PubMed  Google Scholar 

  • Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41(11):1199–1206 (Epub 2009/10/06)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruff C, Holt B, Trinkaus E (2006) Who’s afraid of the big bad Wolff? “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol 129(4):484–498 (Epub 2006/01/21)

    Article  PubMed  Google Scholar 

  • Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349(4):320–323 (Epub 2003/07/25)

    Article  PubMed  Google Scholar 

  • Shultz KL, Donahue LR, Bouxsein ML, Baylink DJ, Rosen CJ, Beamer WG (2003) Congenic strains of mice for verification and genetic decomposition of quantitative trait loci for femoral bone mineral density. J Bone Miner Res 18(2):175–185 (Epub 2003/02/06)

    Article  CAS  PubMed  Google Scholar 

  • Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–433 (Epub 2006/12/22)

    Article  PubMed  Google Scholar 

  • Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ et al (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190(2):437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21(12):1856–1863 (Epub 2006/09/28)

    Article  PubMed  Google Scholar 

  • Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P (2007) Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem 282(8):5691–5703 (Epub 2006/12/05)

    Article  CAS  PubMed  Google Scholar 

  • von Friesendorff M, McGuigan FE, Besjakov J, Akesson K (2011) Hip fracture in men-survival and subsequent fractures: a cohort study with 22-year follow-up. J Am Geriatr Soc 59(5):806–813

    Article  Google Scholar 

  • Wang L, Lu W, Zhang L, Huang Y, Scheib R, Liu X et al (2014) Trps1 differentially modulates the bone mineral density between male and female mice and its polymorphism associates with BMD differently between women and men. PLoS One 9(1):e84485 (Epub 2014/01/15)

    Article  PubMed  PubMed Central  Google Scholar 

  • Willson T, Nelson SD, Newbold J, Nelson RE, LaFleur J (2015) The clinical epidemiology of male osteoporosis: a review of the recent literature. Clin Epidemiol 7:65–76

    PubMed  PubMed Central  Google Scholar 

  • Yalcin B, Flint J, Mott R (2005) Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 171(2):673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42(3):476–482

    Article  CAS  PubMed  Google Scholar 

  • Yuan R, Tsaih SW, Petkova SB, Marin de Evsikova C, Xing S, Marion MA et al (2009) Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8(3):277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann EA, Busse B, Ritchie RO (2015) The fracture mechanics of human bone: influence of disease and treatment. Bonekey Rep 4:743

    Article  PubMed  Google Scholar 

  • Zou F, Gelfond JA, Airey DC, Lu L, Manly KF, Williams RW et al (2005) Quantitative trait locus analysis using recombinant inbred intercrosses: theoretical and empirical considerations. Genetics 170(3):1299–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers AR064941 (to D.R.) and AR060234 (to C.L.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl L. Ackert-Bicknell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, D.J., Rowe, D.W. & Ackert-Bicknell, C.L. Genetics of aging bone. Mamm Genome 27, 367–380 (2016). https://doi.org/10.1007/s00335-016-9650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-016-9650-y

Keywords

Navigation