Skip to main content
Log in

QTL for the heritable inverted teat defect in pigs

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The mothering ability of a sow largely depends on the shape and function of the mammary gland. The aim of this study was to identify QTL for the heritable inverted teat defect, a condition characterized by disturbed development of functional teats. A QTL analysis was conducted in a porcine experimental population based on Duroc and Berlin Miniature pigs (DUMI). The significant QTL were confirmed by linkage analysis in commercial pigs according to the affected sib pair design and refined by family-based association test (FBAT). Nonparametric linkage (NPL) analysis revealed five significant and seven suggestive QTL for the inverted teat defect in the porcine experimental population. In commercial dam lines five significant NPL values were detected. QTL regions in overlapping marker intervals or close proximity in both populations were found on SSC3, SSC4, SSC6, and SSC11. SSC6 revealed QTL in both populations at different positions, indicating the segregation of at least two QTL. The results confirm the previously proposed polygenic inheritance of the inverted teat defect and, for the first time, point to genomic regions harboring relevant genes. The investigation revealed variation of the importance of QTL in the various populations due to either differences in allele frequencies and statistical power or differences in the genetic background that modulates the impact of the liability loci on the expression of the disease. The QTL study enabled us to name a number of plausible positional candidate genes. The correspondence of QTL regions for the inverted teat defect and previously mapped QTL for teat number are in line with the etiologic relationship of these traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Beeckmann P, Moser G, Bartenschlager H, Reiner G, Geldermann H (2003a) Linkage and QTL mapping for Sus scrofa chromosome 8. J Anim Breed Genet 120:66–73

    Article  CAS  Google Scholar 

  • Beeckmann P, Schroffel J, Moser G, Bartenschlager H, Reiner G, et al. (2003b) Linkage and QTL mapping for Sus scrofa chromosome 1. J Anim Breed Genet 120:1–10

    Article  CAS  Google Scholar 

  • Bhattacharjee M, Vonderhaar BK (1984) Thyroid-hormones enhance the synthesis and secretion of alpha-lactalbumin by mouse mammary tissue in vitro. Endocrinology 115:1070–1077

    PubMed  CAS  Google Scholar 

  • Bignell G, Micklem G, Stratton MR, Ashworth A, Wooster R (1997) The BRC repeats are conserved in mammalian BRCA2 proteins. Hum Mol Genet 6:53–58

    Article  PubMed  CAS  Google Scholar 

  • Bohmer FD, Kraft R, Otto A, Wernstedt C, Hellman U, et al. (1987) Identification of a polypeptide growth inhibitor from bovine mammary-gland – sequence homology to fatty acid-binding and retinoid-binding proteins. J Biol Chem 262:15137–15143

    PubMed  CAS  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    Article  PubMed  CAS  Google Scholar 

  • Brevern N, Schimpf B, Wörner R, Swalve H (1994) Parameterschätzung für Zitzenmerkmale bei Hybridsauen. Züchtungskunde 66:339–348

    Google Scholar 

  • Cassady JP, Johnson RK, Pomp D, Rohrer GA, Van Vleck LD, et al. (2001) Identification of quantitative trait loci affecting reproduction in pigs. J Anim Sci 79:623–633

    PubMed  CAS  Google Scholar 

  • Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H (2003) Linkage and QTL mapping for Sus scrofa chromosome X. J Anim Breed Genet 120:144–151

    Article  CAS  Google Scholar 

  • Chomdej S (2005) Molecular genetic analysis of positional candidate genes for mammary gland characteristics in pigs. Thesis, Rheinische Friedrich-Wilhelms–Universität, Bonn

  • Chomdej S, Ponsuksili S, Schellander K, Wimmers K (2004) Sequencing, SNP identification and mapping of the porcine PTHLH gene to chromosome 5. Anim Genet 35:151–152

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Clayton GA, Powell JC, Hiley PG (1981) Inheritance of teat number and teat inversion in pigs. Anim Prod 33:299–304

    Article  Google Scholar 

  • Dragos-Wendrich M, Moser G, Bartenschlager H, Reiner G, Geldermann H (2003) Linkage and QTL mapping for Sus scrofa chromosome 10. J Anim Breed Genet 120:82–88

    Article  CAS  Google Scholar 

  • Dunbar ME, Dann P, Brown CW, Van Houton J, Dreyer B, et al. (2001) Temporally regulated overexpression of parathyroid hormone-related protein in the mammary gland reveals distinct fetal and pubertal phenotypes. J Endocrinol 171:403–416

    Article  PubMed  CAS  Google Scholar 

  • Dundar B, Dundar N, Erci T, Bober E, Büyükgebiz A (2005) Leptin levels in boys with pubertal gynecomastia. J Pediatr Endocrinol Metab 18:929–934

    PubMed  CAS  Google Scholar 

  • Geldermann H, Muller E, Moser G, Reiner G, Bartenschlager H, et al. (2003) Genome-wide linkage and QTL mapping in porcine F-2 families generated from Pietrain, Meishan and Wild Boar crosses. J Anim Breed Genet 120:363–393

    Article  CAS  Google Scholar 

  • Green P (1992) Construction and comparison of chromosome-21 radiation hybrid and linkage maps using Cri-Map. Cytogenet Cell Genet 59:122–124

    Article  PubMed  CAS  Google Scholar 

  • Große Beilage E, Steffens S, Schoon HA, Bollwahn W (1996) Zitzenkörperhypoplasien und -aplasien (Stülpzitzen) bei weiblichen und männlichen Schweinen. Tierärztl Praxis 24:31–35

    Google Scholar 

  • Günther C (1984) Morphologie der sogenannten “Stülpzitze” beim Schwein im Vergleich zum histologischen Bild einer normalen Zitze. Thesis, Freie Universität, Berlin

  • Haley CS, Lee GJ, Richie M (1995) Comparative reproductive performance in Meishan and Large White pigs and their crosses. Anim Sci 60:259–267

    Article  Google Scholar 

  • Hirooka H, de Koning DJ, Harlizius B, van Arendonk JAM, Rattink AP, et al. (2001) A whole-genome scan for quantitative trait loci affecting teat number in pigs. J Anim Sci 79:2320–2326

    PubMed  CAS  Google Scholar 

  • Horvath S, Xu X, Lake SL, Weiss ST, Silverman EK, et al. (2003) Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Am J Hum Genet 73:610–610

    Google Scholar 

  • Hovey RC, Harris J, Hadsell DL, Lee AV, Ormandy CJ, et al. (2003) Local insulin-like growth factor-II mediates prolactin-induced mammary gland development. Mol Endocrinol 17:460–471

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Reecy JM (2007) Animal QTLdb: beyond a repository A public platform for QTL comparisons and integration with diverse types of structural genomic information. Mamm Genome 18:1–4

    Article  PubMed  Google Scholar 

  • Hu Z, Dracheva S, Jang W, Maglott D, Bastiaansen J, et al. (2005) A QTL resource and comparison tool for pigs: PigQTLDB. Mamm Genome 16:792–800

    Article  PubMed  Google Scholar 

  • King AH, Jiang ZH, Gibson JP, Haley CS, Archibald AL (2003) Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biol Reprod 68:2172–2179

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits – guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Chen Y, Moran C, Cepica S, Reiner G, et al. (2003a) Linkage and QTL mapping for Sus scrofa chromosome 2. J Anim Breed Genet 120:11–19

    Article  CAS  Google Scholar 

  • Lee SS, Chen Y, Moran C, Stratil A, Reiner G, et al. (2003b) Linkage and QTL mapping for Sus scrofa chromosome 5. J Anim Breed Genet 120:38–44

    Article  CAS  Google Scholar 

  • Ling C, Svensson L, Oden B, Weijdegard B, Eden B, et al. (2003) Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab 88:1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Mayer JPF (1995) Gesäugeasymmetrie und Stülpzitzenbefall bei Jungsauen. Arch Tierz Dummerstorf 38:97–91

    Google Scholar 

  • Mayer J, Pirchner F (1995) Asymmetry and inverted nipples in gilts. Arch Tierz Dummerstorf 38:87–91

    Google Scholar 

  • McNeilly S (1994) Suckling and the control of gonadotropin secretion. In: Knobil E, Neill JD (eds) The Physiology of Reproduction. vol 2, Chap. 60, Raven Press, New York, pp 1179–1212

  • Meyers SN, Rogatcheva MB, Larkin DM, Yerle M, Milan D, et al. (2005) Piggy-BACing the human genome – II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics 86:739–752

    Article  PubMed  Google Scholar 

  • Musilova P, Kubickova S, Vozdova M, Rubes J (2000) Mapping of the oncogene c-myc (MYC) and the breast cancer susceptibility gene (BRCA2) in the pig by FISH. Anim Genet 31:154–154

    Article  PubMed  CAS  Google Scholar 

  • Nordby JE (1934) Congenital defects in the mammae of swine. J Hered 25:499–502

    Google Scholar 

  • Plath A, Einspanier R, Peters F, Sinowatz F, Schams D (1997) Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation. J Endocrinol 155:501–511

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz D, Laird N (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 50:211–223

    Article  PubMed  CAS  Google Scholar 

  • Remy JJ, Lahbib-Mansais Y, Yerle M, Bozon V, Couture L, et al. (1995) The porcine follitropin receptor – cDNA cloning, functional expression and chromosomal localization of the gene. Gene 163:257–261

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez C, Tomas A, Alves E, Ramirez O, Arque M, et al. (2005) QTL mapping for teat number in an Iberian-by-Meishan pig intercross. Anim Genet 36:490–496

    PubMed  CAS  Google Scholar 

  • Rohrer GA (2000) Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White Composite resource population. J Anim Sci 78:2547–2553

    PubMed  CAS  Google Scholar 

  • Rohrer GA, Ford JJ, Wise TH, Vallet JL, Christenson RK (1999) Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan–White composite swine population. J Anim Sci 77:1385–1391

    PubMed  CAS  Google Scholar 

  • Schaapveld RQJ, Schepens HTG, Robinson GW, Attema J, Oerlemans F, et al. (1997) Impaired mammary gland development and function in mice lacking LAR receptor-like tyrosine phosphatase activity. Dev Biol 188:134–146

    Article  PubMed  CAS  Google Scholar 

  • Short TH, Rothschild MF, Southwood OI, McLaren DG, deVries A, et al. (1997) Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J Anim Sci 75:3138–3142

    PubMed  CAS  Google Scholar 

  • Strange KS, Wilkinson D, Emerman JT (2002) Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast epithelial cells in primary culture. Breast Cancer Res Treat 75:203–212

    Article  PubMed  CAS  Google Scholar 

  • Strange KS, Wilkinson D, Edin G, Emerman JT (2004) Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast stromal cells in primary culture. Breast Cancer Res Treat 84:77–84

    Article  PubMed  CAS  Google Scholar 

  • Steffens S (1993) Stülpzitzen – ein Problem in der Schweinezucht. SUS Schweinezucht und Schweinemast 3:8–11

    Google Scholar 

  • Tapanainen JS, Aittomaki K, Huhtaniemi IT (1997) New insights into the role of follicle-stimulating hormone in reproduction. Ann Med 29:265–266

    PubMed  CAS  Google Scholar 

  • Trakooljul N (2004) Molecular and association analyses of the androgen receptor gene as a candidate for production and reproduction traits in pigs. Thesis, Rheinische Friedrich-Wilhelms–Universität, Bonn

  • Visvader JE, Venter D, Hahm K, Santamaria M, Sum EYM, et al. (2001) The LIM domain gene LMO4 inhibits differentiation of mammary epithelial cells in vitro and is overexpressed in breast cancer. Proc Natl Acad Sci U S A 98:14452–14457

    Article  PubMed  CAS  Google Scholar 

  • Vonderhaar BK, Greco AE (1979) Lobulo-alveolar development of mouse mammary-glands is regulated by thyroid-hormones. Endocrinology 104:409–418

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Akita T, Awata T, Furukawa T, Sugai N, et al. (2000) Quantitative trait loci (QTL) analysis in a Meishan × Gottingen cross population. Anim Genet 31:376–384

    Article  PubMed  CAS  Google Scholar 

  • Wimmers K, Chomdej S, Schellander K, Ponsuksili S (2002) Linkage mapping of SNPs in the porcine relaxin gene. Anim Genet 34:323–324

    Article  Google Scholar 

  • Wimmers K, Fiedler I, Hardge T, Murani E, Schellander K, et al. (2006) QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genet 7:15

    Article  PubMed  CAS  Google Scholar 

  • Wysolmerski JJ, Broadus AE, Zhou J, Fuchs E, Milstone LM, et al. (1994) Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Acad Natl Sci U S A 91:1133–1137

    Article  CAS  Google Scholar 

  • Wysolmerski JJ, McCaugherncarucci JF, Daifotis AG, Broadus AE, Philbrick WM (1995) Overexpression of parathyroid hormone-related protein or parathyroid-hormone in transgenic mice impairs branching morphogenesis during mammary-gland development. Development 121:3539–3547

    PubMed  CAS  Google Scholar 

  • Yaswen P, Smoll A, Hosoda J, Parry G, Stampfer MR (1992) Protein product of a human intronless calmodulin-like gene shows tissue-specific expression and reduced abundance in transformed cells. Cell Growth Differ 3:335–345

    PubMed  CAS  Google Scholar 

  • Yue GH, Beeckmann P, Moser G, Muller E, Bartenschlager H, et al. (2003) QTL alleles on chromosome 7 from fatty Meishan pigs reduce fat deposition. Sci China C Life Sci 46:10–17

    Article  CAS  PubMed  Google Scholar 

  • ZDS (Zentral Verband der Deutschen Schweineproduktion e. V) (2003) Richtlinie fuer die Stationspruefung auf Mastleistung, Schlachtkoerperwert und Fleischbeschaffenheit beim Schwein, 10 December 2003, Bonn, Germany

  • Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, et al. (1999) Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology 140:445–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds provided by the Development Association for Biotechnology Research (FBF) and the Research Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Wimmers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonas, E., Schreinemachers, HJ., Kleinwächter, T. et al. QTL for the heritable inverted teat defect in pigs. Mamm Genome 19, 127–138 (2008). https://doi.org/10.1007/s00335-007-9086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9086-5

Keywords

Navigation