Skip to main content

Advertisement

Log in

Non-pollen palynomorphs in the Black Sea corridor

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

There have been few studies of non-pollen palynomorphs (NPP) in Holocene brackish water environments. The Black Sea is one of the world’s largest and deepest bodies of stable brackish water and a natural laboratory for study of marine carbon cycling to anoxic sediments. The main NPP in the modern sediments of this brackish water sea are dinoflagellate cysts (dinocysts), acritarchs (mainly the prasinophytes Cymatiosphaera, Micrhystridium, Sigmopollis and Pseudoschizaea) and diverse fungal remains. Other NPP include colonial algae, tintinnids, copepod and cladoceran egg covers, testate amoebae and microforaminiferal linings. These NPP assemblages are similar to those in the marginal marine environment of the Pliocene St. Erth Beds (England), but have more abundant NPP, and virtually lack scolecodonts. In the Black Sea corridor, modern assemblages from areas with salinity >22‰ have higher percentages of microforaminiferal linings and fewer prasinophytes, colonial algae and fungal spores. Prasinophytes dominate only in mid-Holocene sediments, during a 2000 years interval of sea level transgression and sapropel deposition. Early Holocene sediments have lower dinocyst diversity, increased fresh–brackish water colonial algae (Pediastrum spp. and Botryococcus braunii), zygnemataceous spores and desmids (including Zygnema, Cosmarium), ostracod linings and fewer foraminiferal linings. These assemblages are similar to those in the Baltic Sea where the annual salinity is about 6–8‰.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrajano T, Aksu AE, Hiscott RN, Mudie PJ (2002) Organic geochemistry and origin of Late Glacial–Holocene sapropelic layers and associated sediments in Marmara Sea. Mar Geol 190:47–60

    Article  Google Scholar 

  • Aksu AE, Hiscott RN, Kaminski MA, Mudie PJ, Gillespie H, Abrajano T, Yasar D (2002) Last glacial–Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Mar Geol 190:119–149

    Article  Google Scholar 

  • Aysel V, Dural B, Şenkardeşlet A, Erduğan H, Aysel F (2008) Marine algae and seagrasses of Samsun (Black Sea, Turkey). J Black Sea/Mediterr Environ 14:53–67

    Google Scholar 

  • Batten DJ (1996) Chapter 26B. Palynofacies and palaeoenvironmental interpretation. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 3. American Association of Stratigraphic Palynologist Foundation, Dallas, pp 1,065–1,084

  • Beyens L, Meisterfeld R (2001) Protozoa: testate amoebae. In: Smol JP, Birks JHB, Last WM (eds) Tracking environmental change using lake sediments. Vol 3: Terrestrial algal and silicious indicators. Kluwer, Dordrecht, pp 121–153

    Google Scholar 

  • Bolch CJS, Reynolds MJ (2002) Species resolution and global distribution of microreticulate dinoflagellate cysts. J Plankton Res 24:565–578

    Article  Google Scholar 

  • Bujak JP (1984) Cenozoic dinoflagellates and acritarchs from the Bering Sea and northern Pacific, DSDP Leg 19. Micropalaeo 30:180–212

    Article  Google Scholar 

  • Christopher RA (1976) Morphology and taxonomic status of Pseudoschizaea Thiergart and Frantz ex R. Potonié emend. Micropaleo 22:143–150

    Article  Google Scholar 

  • de la Rue SR, Rowe HD, Rimmer SM (2007) Palynological and bulk geochemical constraints on the paleoceanographic conditions across the Frasnian–Famennian boundary, New Albany Shale, Indiana. Int J Coal Geol 71:72–84

    Article  Google Scholar 

  • de Vernal A, Goyette C, Rodrigues CG (1989) Contribution palynostratigraphique (dinokystes, pollen et spores) à la connaissance de la mer de Champlain: coupe de Saint-Césaire, Québec. Can J Earth Sci 26:2,450–2,464

    Article  Google Scholar 

  • Ellegaard M, Moestrup Ø (1999) Fine structure of the flagellar apparatus and morphological details of Gymnodinium nolleri sp. nov. (Dinophyceae), an unarmored dinoflagellate producing a microreticulate cyst. Phycologia 38:289–300

    Article  Google Scholar 

  • Fensome RA, Williams GL (2004) The Lentin and Williams index of fossil dinoflagellates. Am Assoc Stratigr Palynol Contrib Ser 42:1–909

    Google Scholar 

  • Fensome R, Williams GL, Barss S, Freeman JM, Hill JM (1990) Acritarchs and fossil prasinophytes: an index to genera, species and infraspecific taxa. Contributions series, American Association of Stratigraphic Palynologist Foundation No. 25, American Association Sedimentary Palynologists, Houston, pp 1–771

  • Filipova-Marinova M (2007) Archaeological and paleontological evidence of climate dynamics, sea-level change, and coastline migration in the Bulgarian sector of the Circum-Pontic region. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea flood question. Springer, Dordrecht, pp 453–482

    Chapter  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Guy-Olsen D (1996) Chapter 7. Green and blue-green algae. 7B. Prasinophycean algae. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologist Foundation, Dallas, pp 181–189

  • Hay WW (1995) Paleoceanography of marine organic-carbon-rich sediments. In: Huc A-Y (ed) Paleogeography, paleoclimate, and source rocks. American Association of Petroleum Geologists, Studies in Geology No. 40, pp 21–59

  • Head MJ (1992) Zygospores of the Zygnemataceae (Division Chlorophyta) and other freshwater algal spores from the uppermost Pliocene St. Erth Beds of Cornwall, southwestern England. Micropaleo 38:237–260

    Article  Google Scholar 

  • Head MJ (1993) Dinoflagellates, sporomorphs and other palynomorphs from the upper Pliocene St. Erth Beds of Cornwall, southwestern England. J Paleontol 67:1–62

    Google Scholar 

  • Head MJ, Borel CM, Guerstein GR, Harland R (2003) The problematic aquatic palynomorph genus Cobricosphaeridium Harland and Sarjeant 1970 emend with new records from the Holocene of Argentina. J Paleontol 77:1,159–1,181

    Article  Google Scholar 

  • Head MJ, Lewis J, de Vernal A (2006) The cyst of the calcareous dinoflagellate Scrippsiella trifida: resolving the fossil record of its organic wall with that of Alexandrium tamarense. J Paleontol 80:1–18

    Article  Google Scholar 

  • Hiscott RN, Aksu SE, Mudie PJ, Marret F, Abrajano T, Kaminski M, Evans J, Cakiroglu A, Yasar D (2007) A gradual drowning of the southwestern Black Sea shelf: evidence for progressive rather than abrupt Holocene reconnection with the eastern Mediterranean Sea through the Marmara Sea gateway. Quat Int 167/168:9–34

    Google Scholar 

  • Inouye I, Hori T, Chihara M (1990) Absolute configuration analysis of the flagellar apparatus of Pterosperma cristatum (Prasinophytaceae) and consideration of its phylogenetic position. J Phycol 26:329–344

    Article  Google Scholar 

  • Kalgutkar RM, Jansonius J (2000) Synopsis of fossil fungal spores, mycelia and fructifications. American Association of Stratigraphic Palynologist Foundation, Contribution Series No 39

  • Kholeif SEA, Mudie PJ (2009) Palynomorph and amorphous organic matter records of climate and oceanic conditions in Late Pleistocene and Holocene sediments of the Nile Cone, southeastern Mediterranean. Palynology 33:1–24

    Article  Google Scholar 

  • Konzalova M (2002) Planktonic microfossil Concentricystes Ross. 1962 from Neogene and (Campanian?)-Palaeogene deposits of tropical and arid areas (Malaysia and Middle East). Zpravy o geologickych vyzkumech v roch [Geoscience Research Reports for 2002], pp 209–1210 (Czechoslovakian, with English abstract)

  • Kunz-Pirrung M (1998) Rekonstruktion der Oberflächenwassermassen der östlichen Laptevsee im Holozän anhand von aquatischen Palynomorphen. Ber Polarforsch 281:1–117

    Google Scholar 

  • Marret F (1993) Les effets de l’acétolyse sur les assemblages des kystes de dinoflagellés. Palynoscience 2:267–272

    Google Scholar 

  • Marret F, Leroy S, Chalié F, Gasse F (2004) New organic-walled dinoflagellate cysts from recent sediments of Central Asian seas. Rev Palaeobot Palynol 129:1–20

    Article  Google Scholar 

  • Marret F, Mudie P, Aksu AE, Hiscott RN (2009) A Holocene dinocyst record of a two-step transformation of the Neoeuxinic brackish water lake into the Black Sea. Quat Int 197:72–86

    Article  Google Scholar 

  • Marret F, Zonneveld KAF (2003) Atlas of modern organic-walled dinoflagellate cyst distribution. Rev Palaeobot Palynol 125:1–200

    Google Scholar 

  • Matthiessen J, Brenner W (1996) Chlorococcalalgen und Dinoflagellaten-Zysten in rezenten Sedimenten des Greifswalder Boddens (südliche Ostesee). Senckenberg Marit 27:33–48

    Google Scholar 

  • Matthiessen J, Kunz-Pirrung M, Mudie PJ (2000) Freshwater chlorophycean algae in recent marine sediments of the Beaufort, Laptev and Kara Seas (Arctic Ocean). Int J Earth Sci 89:470–485

    Article  Google Scholar 

  • Mee LD, Frederich J, Gomoiu MT (2005) Restoring the Black Sea in times of uncertainty. Oceanography 18:100–121

    Google Scholar 

  • Mertens KN, Ribeiro S, Bouimetarhan I, Caner H, Combourieu Nebout N, Dale B, De Vernal A, Ellegaard M, Filipova M, Godhe A, Goubert E, Grosfjeld K, Holzwarth U, Kotthoff U, Leroy SAG, Londeix L, Marret F, Matsuoka K et al (2009) Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: investigating its potential as salinity proxy. Mar Micropaleontol 70:54–69

    Article  Google Scholar 

  • Morzadec-Kerfourn MT (2005) Interaction between sea-level changes and the development of littoral herbaceous vegetation and autotrophic dinoflagellates. Quat Int 133/134:137–140

    Article  Google Scholar 

  • Mudie PJ, Leroy SAG, Marret F, Gerasimenko N, Kholeif SEA, Sapelko T, Filipova-Marinova M (in press) Non-pollen palynomorphs (NPP): indicators of salinity and environmental change in the Caspian–Black Sea–Mediterranean Corridor. In: Buynevich I, Yanko-Hombach V, Smyntyna O, Martin R (eds) Geology and geoarchaeology of the Black Sea region: beyond the flood hypothesis, Chap 7. Don Siegel, Syracuse University, USA

  • Mudie P, Marret F, Aksu AE, Hiscott RN, Gillespie H (2007) Palynological evidence for climatic change, anthropogenic activity and outflow of Black Sea water during the late Pleistocene and Holocene: centennial- to decadal-scale records from the Black and Marmara Seas. Quat Int 167/168:73–90

    Article  Google Scholar 

  • Mudie PJ, McCarthy FMG (2006) Marine palynology: potentials for onshore–offshore correlation of Pleistocene–Holocene records. Trans R Soc S Afr 61:139–158

    Article  Google Scholar 

  • Mudie PJ, Rochon A, Aksu AE, Gillespie H (2002) Dinoflagellate cysts, freshwater algae and fungal spores as salinity indicators in Late Quaternary cores from Marmara and Black seas. Mar Geol 190:203–231

    Article  Google Scholar 

  • Mudie PJ, Rochon A, Aksu AE, Gillespie H (2004) Late glacial, Holocene and modern dinoflagellate cyst assemblages in the Aegean–Marmara–Black Sea corridor: statistical analysis and reinterpretation of the early Holocene Noah’s Flood hypothesis. Rev Palaeobot Palynol 128:143–167

    Article  Google Scholar 

  • Muhsin TM, Booth T (1986) Fungi associated with halophytes of an inland salt marsh, Manitoba, Canada. Can J Bot 65:1,137–1,151

    Article  Google Scholar 

  • Murray JW, Stewart K, Kassakian S, Krynytzky M, DiJulio D (2007) Oxic, suboxic, and anoxic conditions in the Black Sea. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea flood question: changes in coastline, climate and human settlement. Springer, Dordrecht, pp 1–22

    Google Scholar 

  • Nicholls KH (1997) Planktonic green algae in western Lake Erie: the importance of temporal scale in the interpretation of change. Freshw Biol 38:419–425

    Article  Google Scholar 

  • Pals JP, van Geel B, Delfos A (1980) Palaeocological studies in the Klokkeweel bog near Hoogkarspel (prov. of Noord Holland). Rev Palaeobot Palynol 30:371–418

    Article  Google Scholar 

  • Parke M, Boalch GT, Jowett R, Harbour DS (1978) The genus Pterosperma (Prasinophyceae): species with a single equatorial ala. J Mar Biol Assoc UK 58:239–276

    Article  Google Scholar 

  • Playford G (2003) Acritarchs and Prasinophyte phycomata: a short course. Contributions Series No 41, American Association of Stratigraphic Palynologist Foundation, Texas

  • Reid PC, John AWG (1978) Tintinnid cysts. J Mar Biol Assoc UK 58:551–557

    Article  Google Scholar 

  • Reid PC, John AWG (1981) A possible relationship between chitinozoa and tintinnids. Rev Palaeobot Palynol 34:251–262

    Article  Google Scholar 

  • Roman S (1974) Palynoplanktologic analysis of some Black Sea cores. In: Degens ET, Ross DA (eds) The Black Sea: geology, chemistry, and biology. American Association of Petroleum Geologists, Memoir 20, Tulsa, pp 396–410

    Google Scholar 

  • Rossignol M (1964) Hystrichosphères du Quaternaire en Méditerranée orientale dans les sédiments pléistocènes et les boues marines actuelles. Rev Micropal 7:83–99

    Google Scholar 

  • Strother PK (1996) Chapter 15. Acritarchs. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologist Foundation, Dallas, pp 81–106

  • Takahashi K (1964) Microplankton from the Asagai Formation in the Joban coal-field. Trans Proc Palaeontol Soc Jpn NS 54:201–214

    Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurrence. Springer, New York

    Google Scholar 

  • Tomas CR (1993) Marine phytoplankton. Academic Press, San Diego

    Google Scholar 

  • Traverse A (1974) Palynological investigation of two Black Sea cores. In: Degens ET, Ross DA (eds) The Black Sea: geology, chemistry, and biology. American Association of Petroleum Geologists, Memoir 20, Tulsa, pp 381–388

    Google Scholar 

  • Traverse A (1978) Palynological analysis of DSDP Leg 42B (1975) cores from the Black Sea. In: Ross et al (eds) Initial reports of the Deep Sea Drilling Program, vol 42 (part 2). U.S. Government Printing Office, Washington, DC, pp 993–1,015

  • Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, Vol 3: Terrestrial, algal and silicious indicators. Kluwer, Dordrecht, pp 99–119

    Google Scholar 

  • Van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwig 82:313–329

    Article  Google Scholar 

  • Van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the Late-glacial type section at Usselo (The Netherlands). Rev Palaeobot Palynol 60:25–129

    Article  Google Scholar 

  • Wake LV, Hillen LW (1980) Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir. Biotechnol Bioeng 22:1,637–1,656

    Article  Google Scholar 

  • Wall D, Dale B (1974) Dinoflagellates in Late Quaternary deep-water sediments of Black Sea. In: Degens ET, Ross DA (eds) The Black Sea: geology, chemistry, and biology. American Association of Petroleum Geologists, Memoir 20, Tulsa, pp 364–380

    Google Scholar 

  • Wall D, Dale B, Harada K (1973) Description of new fossil dinoflagellates from the Late Quaternary of the Black Sea. Micropaleo 19:18–31

    Article  Google Scholar 

  • Warner B (1990) Testate amoebae (protozoa). Geoscience Canada Reprint Series 5. Geological Association Canada, St. Johns, pp 65–74

  • Wolff H (1934) Mikrofossilien des pliocaenen Humodils der Grube Freigericht bei Dettingen a. M. und Vergleich mit älteren Schichten des Tertiärs sowie posttertiären Ablagerungen. Arb Inst Paläobot Petrogr Brennsteine 5:55–86

    Google Scholar 

  • Yanko-Hombach V (2007) Controversy over Noah’s Flood in the Black Sea: geological and foraminiferal evidence from the shelf. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea flood question. Springer, Dordrecht, pp 149–204

    Chapter  Google Scholar 

  • Zonneveld KAF, Bockelmann FD, Holzwarth U (2007) Selective preservation of organic-walled dinoflagellate cysts as a tool to quantify past net primary production and bottom water oxygen concentrations. Mar Geol 237:109–126

    Article  Google Scholar 

Download references

Acknowledgments

We thank Richard Hiscott and Helen Gillespie, Earth Science Division, Memorial University of Newfoundland, for radiocarbon ages and processing of the palynology samples from the Black Sea corridor, respectively. Also thanks to Bas van Geel, University of Amsterdam, and David Horne, Queen Mary’s College, University of London for identification of previously unknown NPP. We appreciate the helpful comments of reviewers Rob Fensome, Jens Matthiessen and Francine McCarthy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peta J. Mudie.

Additional information

Communicated by J.N. Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudie, P.J., Marret, F., Rochon, A. et al. Non-pollen palynomorphs in the Black Sea corridor. Veget Hist Archaeobot 19, 531–544 (2010). https://doi.org/10.1007/s00334-010-0268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-010-0268-9

Keywords

Navigation