Skip to main content
Log in

Unimodularity and Preservation of Volumes in Nonholonomic Mechanics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The equations of motion of a mechanical system subjected to nonholonomic linear constraints can be formulated in terms of a linear almost Poisson structure in a vector bundle. We study the existence of invariant measures for the system in terms of the unimodularity of this structure. In the presence of symmetries, our approach allows us to give necessary and sufficient conditions for the existence of an invariant volume, which unify and improve results existing in the literature. We present an algorithm to study the existence of a smooth invariant volume for nonholonomic mechanical systems with symmetry and we apply it to several concrete mechanical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that \(X_f\) is not a Hamiltonian vector field in the usual sense since we work with an almost Poisson bracket. It would be more accurate to talk about an almost Hamiltonian vector field. We eliminate the “almost” in our terminology for brevity.

  2. An everyday life example of such type of rigid body is a shoe (without heel).

References

  • Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin/Cummings, Reading (1978)

    MATH  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Nishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. Itogi Nauki i Tekhniki. Sovr. Probl. Mat. Fundamentalnye Napravleniya, vol. 3. VINITI, Moscow (1985). English transl.: Encyclopadia of Math. Sciences, vol. 3. Springer, Berlin (1989)

  • Bloch, A.M., Krishnapasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: The rolling motion of a rigid body on a plane and a sphere Hierarchy of dynamics. Regul. Chaotic Dyn. 7(2), 177–200 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Rolling of a ball on a surface. New integrals and hierarchy of dynamics. Regul. Chaotic Dyn. 7(2), 201–218 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Brylinski, J.L., Zuckerman, G.: The outer derivation of a complex Poisson manifold. J. Reine Angew. Math. 506, 181–189 (1999)

    MATH  MathSciNet  Google Scholar 

  • Cantrijn, F., de León, M., de Martín Diego, D.: On almost-Poisson structures in nonholonomic mechanics. Nonlinearity 12, 721–737 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrijn, F., Cortés, J.: de León M and Martín de Diego D On the geometry of generalized Chaplygin systems Math. Proc. Cambridge Philos. Soc. 132(2), 323–351 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Chaplygin, S.A.: On a ball’s rolling on a horizontal plane. Regul. Chaot. Dyn. 7, 131–148 (2002); original paper in Math Sb., 24, 139–168 (1903)

  • Chaplygin, S.A. On a motion of a heavy body of revolution on a horizontal plane. Collected works, vol. I. Theoretical mechanics. Mathematics (Russian), 51–57, Gos. Izd. Tekhn.-Teoret. Lit., Moscow, 1948 [see MR0052352 (14,609i)]. English translation. In: Regul. Chaotic Dyn. 7(2), 119–130 (2002)

  • de León, M., Marrero, J.C., de Martín Diego, D.: Linear almost Poisson structures and Hamilton-Jacobi theory. J. Geom. Mech. 2(2), 159–198 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Dufour, J.P., Haraki, A.: Rotationnels et structures de Poisson quadratiques. C. R. Acad. Sci. Paris Sér. I Math. 312, 137–140 (1991)

    MATH  MathSciNet  Google Scholar 

  • Evens, S., Lu, J.H., Weinstein, A.: Transverse measures, the modular class and a cohomology pairing for Lie algebroids. Q. J. Math. Oxford 50, 417–436 (1999)

  • Fedorov, Y.N., García-Naranjo, L., Marrero, J.C.: Invariant measures in nonholonomic mechanics. Applied Dynamics and Geometric Mechanics (organized by A.M. Bloch, T. Ratiu, J. Scheurle). Oberwolfach Rep. 8(3), 2256–2260 (2011)

  • Fedorov, Y.N., Jovanović, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlin. Sci. 14(4), 341–381 (2004)

    Article  MATH  Google Scholar 

  • García-Naranjo, L., Marrero, J.C.: Non-existence of an invariant measure for a homogeneous ellipsoid rolling on the plane. Regul. Chaot. Dyn. 18, 372–379 (2013)

    Article  MATH  Google Scholar 

  • García-Naranjo, L.C., Maciejewski, A.J., Marrero, J.C., Przybylska, M.: The inhomogeneous Suslov problem. Phys. Lett. A 378, 2389–2394 (2014)

    Article  Google Scholar 

  • Grabowski, J., de León, M., Marrero, J.C., Martín de Diego, D.: Nonholonomic constraints: a new viewpoint J. Math. Phys. 50(1), 013520 (2009) (17 pp)

  • Grabowski, J., Marmo, G., Perelomov, A.M.: Poisson structures: towards a classification. Modern Phys. Lett. A 8, 1719–1733 (1993)

  • Grabowski, J.: Modular classes of skew symmetric relations. Transform. Gr. 17, 989–1010 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Ibort, A., de León, M.: Marrero J C and Martín de Diego D Dirac brackets in constrained dynamics. Fortschr. Phys. 47, 459–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Jovanović, B.: Nonholonomic geodesic flows on Lie groups and the integrable Suslov problem on SO(4). J. Phys. A 31, 1415–1422 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Koiller, J.: Reduction of some classical nonholonomic systems with symmetry. Arch. Ration. Mech. Anal. 118, 113–148 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Koiller, J., Ehlers, K.: Rubber rolling over a sphere. Regul. Chaot. Dyn. 12, 127–152 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Koon, W.S., Marsden, J.E.: Poisson reduction of nonholonomic mechanical systems with symmetry. Rep. Math. Phys. 42(1/2), 101–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Kozlov, V.V.: Invariant measures of the Euler-Poincaré equations on Lie algebras. Funkt. Anal. Prilozh. 22, 69–70 (Russian); English trans. Funct. Anal. Appl. 22, 58–59 (1988)

  • Liu, Z.J., Xu, P.: On quadratic Poisson structures. Lett. Math. Phys. 26, 33–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Marle, Ch.: M Various approaches to conservative and nonconservative nonholonomic systems Rep. Math. Phys. 42, 211–229 (1998)

    MATH  MathSciNet  Google Scholar 

  • Marrero, J.C.: Hamiltonian dynamics on Lie algebroids, unimodularity and preservation of volumes. J. Geom. Mech. 2(3), 243–263 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to mechanics with symmetry. Texts in Applied Mathematics, vol. 17. Springer (1994)

  • Ortega, J.P., Ratiu, T.S.: Momentum maps and Hamiltonian reduction. Progress in Mathematics, vol. 222. Birkhuser Boston Inc., Boston (2004)

  • Routh, E.D.: Dynamics of a System of Rigid Bodies. 7th edn., revised and enlarged. Dover Publications Inc, New York (1960)

  • Schneider, D.: Non-holonomic Euler-Poincaré equations and stability in Chaplygin’s sphere. Dyn. Syst. 17, 87–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Stübler, E.: Zeinschriftür Math. und Phys. B 57, 260–271 (1909)

    MATH  Google Scholar 

  • Vaisman, I.: Lectures on the geometry of Poisson manifolds. Progress in Mathematics, vol. 118. Birkhäuser Verlag, Basel (1994)

  • Van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of non-holonomic mechanical systems. Rep. Math. Phys. 34, 225–233 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on lie groups. Mat. Notes 44(5–6), 810–819 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, A.: The modular automorphism group of a Poisson manifold. J. Geom. Phys. 23, 379–394 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Woronetz, P.: Uber die Bewegung eines starren Korpers, der ohne Gleitung auf einer beliebigen Flache rollt. (German). Math. Ann. 70(3), 410–453 (1911)

    Article  MATH  MathSciNet  Google Scholar 

  • Woronetz, P.: Uber die Bewegungsgleichungen eines starren Korpers. (German). Math. Ann. 71(3), 392–403 (1911)

    Article  MathSciNet  Google Scholar 

  • Xu, P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200, 545–560 (1999)

    Article  MATH  Google Scholar 

  • Yaroshchuk, V.A. New cases of the existence of an integral invariant in a problem on the rolling of a rigid body, without slippage, on a fixed surface. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. (6), 26–30 (1992)

  • Zenkov, D.V., Bloch, A.M.: Invariant measures of nonholonomic flows with internal degrees of freedom. Nonlinearity 16, 1793–1807 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by MEC (Spain) Grants MTM2009-13383, MTM2011-15725-E, MTM2012-34478, MTM2012-31714 and the project of the Canary Government ProdID20100210. All the authors are grateful to their institutions for funding our research visits, which allowed the completion of the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Marrero.

Additional information

Communicated by Anthony Bloch.

Appendix: Volume Forms on Vector Bundles

Appendix: Volume Forms on Vector Bundles

Let \(\tau : E \rightarrow Q\) be an orientable vector bundle, over an orientable manifold \(Q\). If \(\alpha \) is a section of \(\tau : E \rightarrow Q\), we can define its vertical lift \(\alpha ^\mathbf{v}\), which is the vector field on \(E\) given by

$$\begin{aligned} \alpha ^\mathbf{v}(\gamma _{q}) = \frac{d}{dt}_{|t=0}(\gamma _{q} + t\alpha (q)), \text{ for } \gamma _{q} \in E_q. \end{aligned}$$

If \(\{e^{\beta }\}\) is a local basis of sections of \(E\) and \(\alpha = \alpha _{\beta }e^{\beta }\) then

$$\begin{aligned} \alpha ^\mathbf{v} = \alpha _{\beta }\frac{\partial }{\partial p_{\beta }}, \end{aligned}$$
(7.1)

where \(p_{\beta }\) are the coordinates on the fibers of \(E\) obtained using the basis \(\{e^{\beta }\}\).

Lemma 7.1

Marrero (2010) Let \(\nu \) be a volume form on \(Q\) and \(\Omega \) be a volume form on the fibers of \(E^*\). Then, there exists a unique volume form \(\nu \wedge \Omega \) on \(E\) such that

$$\begin{aligned} \nu \wedge \Omega (\tilde{Z}_{1}, \dots , \tilde{Z}_{m}, \alpha _{1}^\mathbf{v}, \dots , \alpha _{n}^\mathbf{v}) = \nu (Z_{1}, \dots , Z_{m}) \Omega (\alpha _{1}, \dots , \alpha _{n}), \end{aligned}$$
(7.2)

for \(\alpha _{1}, \dots , \alpha _{n} \in \Gamma (\tau )\) and \(\tilde{Z}_{1}, \dots , \tilde{Z}_{m}\) vector fields on \(E\) which are \(\tau \)-projectable on the vector fields \(Z_{1}, \dots , Z_{m}\) on \(Q\).

Locally, if \((q^i)\) are local coordinates on an open subset \(U \subseteq Q\) and \(\{e_{\alpha }\}\) is a basis of sections of \(E^*\) such that

$$\begin{aligned} \nu = dq^1 \wedge \dots \wedge dq^m, \text{[ }.75cm]{} \Omega = e_{1} \wedge \dots \wedge e_{n}, \end{aligned}$$

then

$$\begin{aligned} \nu \wedge \Omega = dq^1 \wedge \dots \wedge dq^m \wedge dp_{1} \wedge \dots \wedge dp_{n}. \end{aligned}$$
(7.3)

A volume form \(\Phi \) on \(E\) is said to be of basic type if

$$\begin{aligned} {\mathcal L}_{\alpha ^\mathbf{v}}\Phi = 0, \; \; \; \forall \alpha \in \Gamma (\tau ). \end{aligned}$$
(7.4)

Using (7.3), it is easy to prove that the volume form \(\nu \wedge \Omega \) is of basic type. In fact, we have the following result:

Proposition 7.2

A volume form \(\Phi \) on \(E\) is of basic type if and only if there exists a volume form \(\nu \) on \(Q\) and a volume form \(\Omega \) on the fibers of \(E^*\) such that

$$\begin{aligned} \Phi = \nu \wedge \Omega . \end{aligned}$$

Proof

Suppose that \(\Phi \) is a volume form on \(E\) of basic type.

Let \(\nu _0\) be an arbitrary volume form on \(Q\) and \(\Omega _0\) a volume form on the fibers of \(E^*\). Then we can assume, without the loss of generality, that

$$\begin{aligned} \Phi = e^{\tilde{\sigma }} \nu _{0} \wedge \Omega _0, \; \; \; \text{ with } \tilde{\sigma } \in C^{\infty }(E). \end{aligned}$$

Now, using (7.4), it follows that

$$\begin{aligned} d\tilde{\sigma }(\gamma ^\mathbf{v}) = 0, \; \; \; \forall \gamma \in \Gamma (\tau ), \end{aligned}$$

which implies that \(\tilde{\sigma }\) is a basic function with respect to the vector bundle projection \(\tau : E \rightarrow Q\). In other words, there exists \(\sigma \in C^{\infty }(Q)\) such that \(\tilde{\sigma } = \sigma \circ \tau \).

Thus, if we take

$$\begin{aligned} \nu = e^{\sigma } \nu _0, \; \; \; \Omega = \Omega _0, \end{aligned}$$

we have that \(\Phi = \nu \wedge \Omega \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, Y.N., García-Naranjo, L.C. & Marrero, J.C. Unimodularity and Preservation of Volumes in Nonholonomic Mechanics. J Nonlinear Sci 25, 203–246 (2015). https://doi.org/10.1007/s00332-014-9227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9227-4

Keywords

Mathematics Subject Classification

Navigation