Skip to main content
Log in

Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider a derivative nonlinear Schrödinger equation with a general nonlinearity. This equation has a two-parameter family of solitary wave solutions. We prove orbital stability/instability results that depend on the strength of the nonlinearity and, in some instances, on the velocity. We illustrate these results with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2006)

    Google Scholar 

  • Angulo Pava, J.: Nonlinear dispersive equations. Existence and stability of solitary and periodic travelling wave solutions. Mathematical Surveys and Monographs, vol. 156. Amer. Math. Soc., Providence (2009)

    Google Scholar 

  • Biagioni, H.A., Linares, F.: Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations. Trans. Am. Math. Soc. 353(9), 3649–3659 (2001)

    Article  MathSciNet  Google Scholar 

  • Colin, M., Ohta, M.: Stability of solitary waves for derivative nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23, 753–764 (2006)

    Article  MathSciNet  Google Scholar 

  • Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: A refined global well-posedness result for Schrödinger equations with derivative. SIAM J. Math. Anal. 34, 64–86 (2002)

    Article  MathSciNet  Google Scholar 

  • Comech, A., Pelinovsky, D.: Purely nonlinear instability of standing waves with minimal energy. Commun. Pure Appl. Math. 56, 1565–1607 (2003)

    Article  MathSciNet  Google Scholar 

  • Comech, A., Cuccagna, S., Pelinovsky, D.: Nonlinear instability of a critical traveling wave in the generalized Korteweg-de Vries equation. SIAM J. Math. Anal. 39, 1–33 (2007)

    Article  MathSciNet  Google Scholar 

  • DiFranco, J.C., Miller, P.D.: The semiclassical modified nonlinear Schrödinger equation I: Modulation theory and spectral analysis. Physica D 237, 947–997 (2008)

    Article  MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MathSciNet  Google Scholar 

  • Grünrock, A.: Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. Int. Math. Res. Not. 41, 2525–2558 (2005)

    Article  Google Scholar 

  • Grünrock, A., Herr, S.: Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data. SIAM J. Math. Anal. 39, 1890–1920 (2008)

    Article  MathSciNet  Google Scholar 

  • Guo, B., Wu, Y.: Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation. J. Differ. Equ. 123, 35–55 (1995)

    Article  MathSciNet  Google Scholar 

  • Hao, C.: Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 6, 997–1021 (2007)

    Article  MathSciNet  Google Scholar 

  • Hayashi, N.: The initial value problem for the derivative nonlinear Schrödinger equation in the energy space. Nonlinear Anal. 20, 823–833 (1993)

    Article  MathSciNet  Google Scholar 

  • Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Physica D 55, 14–36 (1992)

    Article  MathSciNet  Google Scholar 

  • Hayashi, N., Ozawa, T.: Finite energy solutions of nonlinear Schrödinger equations of derivative type. SIAM J. Math. Anal. 25, 1488–1500 (1994a)

    Article  MathSciNet  Google Scholar 

  • Hayashi, N., Ozawa, T.: Remarks on nonlinear Schrödinger equations in one space dimension. Differ. Integral Equ. 7, 453–461 (1994b)

    MathSciNet  Google Scholar 

  • Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  Google Scholar 

  • Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  MathSciNet  Google Scholar 

  • Kenig, C.E., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 10, 255–288 (1993)

    MathSciNet  Google Scholar 

  • Kenig, C.E., Ponce, G., Vega, L.: Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134, 489–545 (1998)

    Article  MathSciNet  Google Scholar 

  • Lee, J.: Global solvability of the derivative nonlinear Schrödinger equation. Trans. Am. Math. Soc. 314, 107–118 (1989)

    Google Scholar 

  • Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, Berlin (2009)

    Google Scholar 

  • Liu, X., Simpson, G., Sulem, C.: Focusing singularity in a derivative nonlinear Schrödinger equation (2013). arXiv:1301.1048

  • Marzuola, J.L., Raynor, S., Simpson, G.: A system of ODEs for a perturbation of a minimal mass soliton. J. Nonlinear Sci. 20, 425–461 (2010)

    Article  MathSciNet  Google Scholar 

  • Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the Magnetic field in Cold plasmas. J. Phys. Soc. 41, 265–271 (1976)

    Article  MathSciNet  Google Scholar 

  • Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    Article  Google Scholar 

  • Moses, J., Malomed, B., Wise, F.: Self-steepening of ultrashort optical pulses without self-phase-modulation. Phys. Rev. A 76, 1–4 (2007)

    Article  Google Scholar 

  • Ohta, M.: Instability of bound states for abstract nonlinear Schrödinger equations. J. Funct. Anal. 261, 90–110 (2011)

    Article  MathSciNet  Google Scholar 

  • Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45, 137–163 (1996)

    Article  MathSciNet  Google Scholar 

  • Passot, T., Sulem, P.L.: Multidimensional modulation of Alfvén waves. Phys. Rev. E 48, 2966–2974 (1993)

    Article  MathSciNet  Google Scholar 

  • Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, Berlin (1999)

    Google Scholar 

  • Tan, S.B., Zhang, L.H.: On a weak solution of the mixed nonlinear Schrödinger equations. J. Math. Anal. Appl. 182, 409–421 (1994)

    Article  MathSciNet  Google Scholar 

  • Tsutsumi, M., Fukuda, I.: On solutions of the derivative nonlinear Schrödinger equation, existence and uniqueness theorem. Funkc. Ekvacioj 23, 259–277 (1980)

    MathSciNet  Google Scholar 

  • Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MathSciNet  Google Scholar 

  • Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. XXXIX, 51–68 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

G.S. was supported by NSERC. His contribution to this work was completed under the NSF PIRE grant OISE-0967140 and the DOE grant DE-SC0002085.

C.S. is partially supported by NSERC through grant number 46179-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Simpson.

Additional information

Communicated by A. Scheel.

Appendix: Auxiliary Calculations

Appendix: Auxiliary Calculations

In this section, we present certain integral relations that are helpful in studying the determinant and trace of d″(ω,c). In the following, we denote \(\kappa =\sqrt{4\omega-c^{2}} >0\) and rewrite the solitary solution (1.9) as φ(x)2σ=f(ω,c)h(ω,c;x)−1, with

$$ f(\omega,c)=\frac{(\sigma+1)\kappa^2 }{2\sqrt{\omega}},\qquad h(x;\sigma;\omega,c)=\cosh(\sigma\kappa x)-\frac{c}{2\sqrt{\omega}}. $$

We also rewrite the functionals Q, P defined in (2.6)–(2.7) and their derivatives in terms of h and f:

(A.1)
(A.2)
(A.3)
(A.4)
(A.5)
(A.6)

where

The expressions in (A.3)–(A.6) involve various integrals. The following lemmas show that all of them can be expressed in terms of

$$\alpha_n =\int_0^\infty h^{-\frac{1}{\sigma}-n} \,\mathrm{d}x. $$

Lemma A.1

$$ \alpha_2 = \frac{4\omega}{(\sigma+1)\kappa^2} \alpha_0 + \frac{2c\sqrt{\omega}(2+\sigma)}{(\sigma+1) \kappa^2} \alpha_1 . $$
(A.7)

Proof

We first rewrite α 0, and then integrate by parts:

Regrouping the terms in this last expression, we obtain (A.7). □

Lemma A.2

We have the following relations:

(A.8)
(A.9)
(A.10)
(A.11)

Proof

By integration by parts, and n integer,

$$ \int_0^\infty h^{-\frac{1}{\sigma}-n}h_c \,\mathrm{d}x = \frac{ c}{\kappa^2 (-\frac{1}{\sigma}-n+1)} \int_0^\infty h^{-\frac{1}{\sigma}-n+1} \,\mathrm{d}x -\frac{1}{2\sqrt{\omega}}\int_0^\infty h^{-\frac{1}{\sigma}-n} \,\mathrm{d}x. $$

Choosing n=2,1, we get (A.8) and (A.9). The relations (A.10) and (A.11) are obtained from (A.8), (A.9), and \(h_{\omega}=-\frac{2}{c}h_{c} -\frac{\kappa^{2}}{4\omega^{3/2}c}\). □

Using Lemmas A.1 and A.2, we have the following.

Lemma A.3

Denoting \(\tilde{\kappa}= 2^{-\frac{1}{\sigma}-2} \sigma^{-1} (1+\sigma)^{\frac{1}{\sigma}}\kappa^{2(\frac{1}{\sigma}-1)} \omega^{-\frac{1}{2\sigma}-\frac{1}{2}} \), we have

This is used in Sect. 4 to obtain (4.1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Simpson, G. & Sulem, C. Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation. J Nonlinear Sci 23, 557–583 (2013). https://doi.org/10.1007/s00332-012-9161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9161-2

Keywords

Mathematics Subject Classification

Navigation