Skip to main content

Advertisement

Log in

Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess the predictive ability of a multi-parametric MRI-based radiomics signature (RS) for the preoperative evaluation of Ki-67 proliferation status in sinonasal malignancies.

Methods

A total of 128 patients with sinonasal malignancies that underwent multi-parametric MRIs at two medical centres were retrospectively analysed. Data from one medical centre (n = 77) were used to develop the predictive models and data from the other medical centre (n = 51) constitute the test dataset. Clinical data and conventional MRI findings were reviewed to identify significant predictors. Radiomics features were determined using maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms. Subsequently, RSs were established using a logistic regression (LR) algorithm. The predictive performance of RSs was assessed using calibration, decision curve analysis (DCA), accuracy, and AUC.

Results

No independent predictors of high Ki-67 proliferation were observed based on clinical data and conventional MRI findings. RS-T1, RS-T2, and RS-T1c (contrast enhancement T1WI) were established based on a single-parametric MRI. RS-Combined (combining T1WI, FS-T2WI, and T1c features) was developed based on multi-parametric MRI and achieved an AUC and accuracy of 0.852 (0.733–0.971) and 86.3%, respectively, on the test dataset. The calibration curve and DCA demonstrated an improved fitness and benefits in clinical practice.

Conclusions

A multi-parametric MRI-based RS may be used as a non-invasive, dependable, and accurate tool for preoperative evaluation of the Ki-67 proliferation status to overcome the sampling bias in sinonasal malignancies.

Key Points

• Multi-parametric MRI-based radiomics signatures (RSs) are used to preoperatively evaluate the proliferation status of Ki-67 in sinonasal malignancies.

• Radiomics features are determined using maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms.

• RSs are established using a logistic regression (LR) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3D-ROI:

Three-dimensional region of interest

AUC:

Area under the curve

DCA:

Decision curve analysis

DKI:

Diffusion kurtosis imaging

FS-T2WI:

Fat-suppressed T2-weighted images

ICC:

Intraclass correlation coefficient

Kmax:

Maximum kurtosis

LASSO:

Least absolute shrinkage and selection operator

LR:

Logistic regression

mRMR:

Maximum relevance minimum redundancy

RS:

Radiomics signature

T1c:

Contrast-enhanced T1

T1WI:

T1-weighted images

TE:

Echo time

TR:

Repetition time

References

  1. Bracigliano A, Tatangelo F, Perri F et al (2021) Malignant sinonasal tumors: update on histological and clinical management. Curr Oncol 28:2420–2438

    Article  PubMed  PubMed Central  Google Scholar 

  2. Raghavan P, Phillips CD (2007) Magnetic resonance imaging of sinonasal malignancies. Top Magn Reson Imaging 18:259–267

    Article  PubMed  Google Scholar 

  3. Resto VA, Deschler DG (2004) Sinonasal malignancies. Otolaryngol Clin North Am 37:473–487

    Article  PubMed  Google Scholar 

  4. Day TA, Beas RA, Schlosser RJ et al (2005) Management of paranasal sinus malignancy. Curr Treat Options Oncol 6:3–18

    Article  PubMed  Google Scholar 

  5. Mody MD, Saba NF (2020) Multimodal therapy for sinonasal malignancies: updates and review of current treatment. Curr Treat Options Oncol 21:4

    Article  PubMed  Google Scholar 

  6. Khademi B, Moradi A, Hoseini S, Mohammadianpanah M (2009) Malignant neoplasms of the sinonasal tract: report of 71 patients and literature review and analysis. Oral Maxillofac Surg 13:191–199

    Article  PubMed  Google Scholar 

  7. Valente G, Mamo C, Bena A et al (2006) Prognostic significance of microvessel density and vascular endothelial growth factor expression in sinonasal carcinomas. Hum Pathol 37:391–400

    Article  CAS  PubMed  Google Scholar 

  8. Shen W, Sakamoto N, Yang L (2017) Prognostic models and nomograms for predicting survival of patients with maxillary sinus carcinomas. Int Forum Allergy Rhinol 7:741–748

    Article  PubMed  Google Scholar 

  9. Airoldi M, Garzaro M, Valente G et al (2009) Clinical and biological prognostic factors in 179 cases with sinonasal carcinoma treated in the Italian Piedmont region. Oncology 76:262–269

    Article  PubMed  Google Scholar 

  10. Chen X, He C, Han D et al (2017) The predictive value of Ki-67 before neoadjuvant chemotherapy for breast cancer: a systematic review and meta-analysis. Future Oncol 13:843–857

    Article  CAS  PubMed  Google Scholar 

  11. Classe M, Burgess A, El Zein S et al (2019) Evaluating the prognostic potential of the Ki67 proliferation index and tumour-infiltrating lymphocytes in olfactory neuroblastoma. Histopathology 75:853–864

    Article  PubMed  Google Scholar 

  12. Chen WJ, He DS, Tang RX, Ren FH, Chen G (2015) Ki-67 is a valuable prognostic factor in gliomas: evidence from a systematic review and meta-analysis. Asian Pac J Cancer Prev 16:411–420

    Article  PubMed  Google Scholar 

  13. Kim DK, Kim DW, Kim SW et al (2008) Ki67 antigen as a predictive factor for prognosis of sinonasal mucosal melanoma. Clin Exp Otorhinolaryngol 1:206–210

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jansen EP, Keus RB, Hilgers FJ et al (2000) Does the combination of radiotherapy and debulking surgery favor survival in paranasal sinus carcinoma? Int J Radiat Oncol Biol Phys 48:27–35

    Article  CAS  PubMed  Google Scholar 

  15. Dirix P, Nuyts S, Vanstraelen B et al (2007) Post-operative intensity-modulated radiotherapy for malignancies of the nasal cavity and paranasal sinuses. Radiother Oncol 85:385–391

    Article  PubMed  Google Scholar 

  16. Helsel JC, Bardales RH, Mukunyadzi P (2003) Fine-needle aspiration biopsy cytology of malignant neoplasms of the sinonasal tract. Cancer 99:105–112

    Article  PubMed  Google Scholar 

  17. Hayashi T, Hirokawa M, Higuchi M et al (2020) Needle tract implantation following fine-needle aspiration of thyroid cancer. World J Surg 44:378–384

    Article  PubMed  Google Scholar 

  18. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  19. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thrall JH, Li X, Li Q et al (2018) Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15:504–508

    Article  PubMed  Google Scholar 

  21. Wu G, Woodruff HC, Shen J et al (2020) Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study. Radiology 297:451–458

    Article  PubMed  Google Scholar 

  22. Wang H, Zhang J, Bao S et al (2020) Preoperative MRI-based radiomic machine-learning nomogram may accurately distinguish between benign and malignant soft-tissue lesions: a two-center study. J Magn Reson Imaging 52:873–882

    Article  PubMed  Google Scholar 

  23. Ji GW, Zhu FP, Xu Q et al (2020) Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a multi-institutional study. Radiology 294:568–579

    Article  PubMed  Google Scholar 

  24. Bi SC, Zhang H, Wang HX et al (2021) Radiomics nomograms based on multi-parametric MRI for preoperative differential diagnosis of malignant and benign sinonasal tumors: a two-centre study. Front Oncol 11:659905

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhou B, Xu J, Tian Y, Yuan S, Li X (2018) Correlation between radiomic features based on contrast-enhanced computed tomography images and Ki-67 proliferation index in lung cancer: A preliminary study. Thorac Cancer 9:1235–1240

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liang C, Cheng Z, Huang Y et al (2018) An MRI-based radiomics classifier for preoperative prediction of Ki-67 status in breast cancer. Acad Radiol 25:1111–1117

    Article  PubMed  Google Scholar 

  27. Zhang QW, Gao YJ, Zhang RY et al (2020) Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort. Clin Transl Med 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xiao Z, Zhong Y, Tang Z et al (2018) Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion MR imaging of sinonasal malignancies: correlations with Ki-67 proliferation status. Eur Radiol 28:2923–2933

    Article  PubMed  Google Scholar 

  29. Yushkevich PA, Yang G, Gerig G (2016) ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu Int Conf IEEE Eng Med Biol Soc 2016:3342–3345

    PubMed  Google Scholar 

  30. Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Muller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18:176–196

    Article  PubMed  Google Scholar 

  31. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lucia F, Visvikis D, Vallieres M et al (2019) External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 46:864–877

    Article  PubMed  Google Scholar 

  33. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I (2019) Validation of a method to compensate multicenter effects affecting CT radiomics. Radiology 291:53–59

    Article  PubMed  Google Scholar 

  34. Pulickal GG, Navaratnam AV, Nguyen T et al (2018) Imaging sinonasal disease with MRI: providing insight over and above CT. Eur J Radiol 102:157–168

    Article  PubMed  Google Scholar 

  35. Zhang J, Yao K, Liu P et al (2020) A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: a multicentre study. EBioMedicine 58:102933

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee J, Wang N, Turk S et al (2020) Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning. Sci Rep 10:20331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hexiang Wang or Dapeng Hao.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dapeng Hao.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (Jie Li) has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• multicentre study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, S., Li, J., Wang, T. et al. Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study. Eur Radiol 32, 6933–6942 (2022). https://doi.org/10.1007/s00330-022-08780-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-08780-w

Keywords

Navigation