Skip to main content

Advertisement

Log in

Increased volumes of mildly elevated capillary transit time heterogeneity positively predict favorable outcome and negatively predict intracranial hemorrhage in acute ischemic stroke with large vessel occlusion

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

In patients with acute ischemic stroke, we aimed to investigate whether microvascular changes, as indexed by capillary transit time heterogeneity (CTH), contribute to the decline of the chance for favorable outcome over time and whether they are a predictor of an intracranial hemorrhage (ICH).

Methods

We retrospectively calculated CTH maps for 131 consecutive patients with acute ischemic stroke due to large vessel occlusion of the anterior circulation who had a relevant MRI PWI-DWI mismatch and were treated with endovascular thrombectomy (ET). Multivariable logistic regressions were conducted with favorable outcome (mRS ≤ 2 after 3 months) and occurrence of an ICH as dependent variables and the volume of mildly elevated CTH as independent variable adjusted for age, successful recanalization, hypertension, diabetes, atrial fibrillation, NIHSS score on admission, DWI lesion volume, and symptom-onset-to-treatment time (OTT).

Results

A larger volume of mildly elevated CTH was a positive predictor of favorable outcome (OR 1.17; 1.03–1.33; p = 0.019) and a negative predictor of ICH (OR 0.83; 0.73–0.96; p = 0.009). As expected, successful recanalization (OR 5.54; 1.8–17; p = 0.003), low NIHSS on admission (OR 0.9; 0.82–1.00; p = 0.045), short OTT (OR 0.96; 0.94–0.99; p = 0.006), and low DWI volume (OR 0.68; 0.49–0.94; p = 0.021) were also predictors of favorable outcome, whereas other negative predictors of ICH were atrial fibrillation (OR 2.69; 1.10–6.57; p = 0.030), high NIHSS score on admission (OR 1.10 (1.01–1.19); p = 0.030), and large DWI volume (OR 1.51; 1.17–1.19; p = 0.002).

Conclusion

An increased volume of mildly elevated CTH is a positive predictor of favorable outcome and a negative predictor for ICH in patients with acute ischemic stroke and mismatch undergoing ET.

Key Points

• The classification of potentially salvageable tissue and infarct core based on traditional net perfusion parameters (as Tmax or CBF) does not account for the microvascular distribution of blood.

• However, the microvascular distribution of blood, as indexed by the capillary transit time heterogeneity (CTH), directly affects the availability of oxygen within the hypoperfused tissue and should therefore be respected in acute ischemic stroke imaging.

• In our study, mildly elevated CTH is found to be a positive predictor for a favorable clinical outcome and a negative predictor for the occurrence of an intracranial hemorrhage in patients with acute ischemic stroke and homogenous mismatch who underwent ET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

CTH:

Capillary transit time heterogeneity

ET:

Endovascular thrombectomy

ICA:

Internal carotid artery

LVO:

Large vessel occlusion

MCA:

Middle cerebral artery

mRS:

Modified Rankin scale

MTT:

Mean transit time

NECT:

Non-enhanced CT imaging

NIHSS:

National Institute of Health Stroke Scale

OEF:

Oxygen extraction fraction

OTT:

Symptom-onset-to-treatment time

References

  1. Goyal M, Menon BK, von Zwam WH et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387:1723–1731

    Article  PubMed  Google Scholar 

  2. Nogueira RG, Jadhav AP, Haussen DC et al (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378:11–21

    Article  PubMed  Google Scholar 

  3. Albers GW, Marks MP, Kemp S et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378:708–718

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lansberg MG, Straka M, Kemp S et al (2012) MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 10:860–867

    Article  Google Scholar 

  5. Campbell BC, Christensen S, Levi CR et al (2011) Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 42(12):3435–3440

    Article  PubMed  Google Scholar 

  6. d’Esterre CD, Boesen ME, Ahn SH et al (2015) Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke. Stroke 46(12):3390–3397

    Article  PubMed  Google Scholar 

  7. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50(1):164–174

    Article  PubMed  Google Scholar 

  8. Calamante F, Christensen S, Desmond PM, Østergaard L, Davis SM, Connelly A (2010) The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke 41(6):1169–1174

    Article  PubMed  Google Scholar 

  9. Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018

    Article  CAS  PubMed  Google Scholar 

  10. Saver JL, Goyal M, Bonafe A et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372:2285–2295

    Article  CAS  PubMed  Google Scholar 

  11. Saver JL, Goyal M, van der Lugt A et al (2016) Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA 316:1279–1289

    Article  PubMed  Google Scholar 

  12. Mundiyanapurath S, Diatschuk S, Loebel S et al (2017) Outcome of patients with proximal vessel occlusion of the anterior circulation and DWI-PWI mismatch is time-dependent. Eur J Radiol 91:82–87

    Article  PubMed  Google Scholar 

  13. Østergaard L, Jespersen SN, Mouridsen K et al (2013) The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab 33(5):635–648

    Article  PubMed  PubMed Central  Google Scholar 

  14. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 12:723–725

    Article  CAS  PubMed  Google Scholar 

  15. Jespersen SN, Østergaard L (2012) The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab 32(2):264–277

    Article  CAS  PubMed  Google Scholar 

  16. Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 263:H1770–H1778

    CAS  PubMed  Google Scholar 

  17. Engedal TS, Hjort N, Hougaard KD et al (2017) Transit time homogenization in ischemic stroke - a novel biomarker of penumbral microvascular failure? J Cereb Blood Flow Metab 38(11):2006–2020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S (2006) Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 33(2):570–579

    Article  PubMed  Google Scholar 

  19. Mouridsen K, Hansen MB, Østergaard L, Jespersen SN (2014) Reliable estimation of capillary transit time distributions using DSC-MRI. J Cereb Blood Flow Metab 34(9):1511–1521

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schumann P, Touzani O, Young AR, Morello R, Baron JC, MacKenzie ET (1998) Evaluation of the ratio of cerebral blood flow to cerebral blood volume as an index of local cerebral perfusion pressure. Brain 121(7):1369–1379

    Article  PubMed  Google Scholar 

  21. Rasmussen PM, Jespersen SN, Østergaard L (2015) The effects of transit time heterogeneity on brain oxygenation during rest and functional activation. J Cereb Blood Flow Metab 35(3):432–442

    Article  PubMed  Google Scholar 

  22. Potreck A, Seker F, Hoffmann A et al (2017) A novel method to assess pial collateralization from stroke perfusion MRI: subdividing Tmax into anatomical compartments. Eur Radiol 27(2):618–626

    Article  PubMed  Google Scholar 

  23. Mundiyanapurath S, Ringleb PA, Diatschuk S et al (2016) Capillary transit time heterogeneity is associated with modified Rankin scale score at discharge in patients with bilateral high grade internal carotid artery stenosis. PLoS One 11(6):e0158148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 12(3):400–410

    Article  CAS  PubMed  Google Scholar 

  25. Derdeyn CP, Videen TO, Yundt KD et al (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125:595–607

    Article  PubMed  Google Scholar 

  26. Baron JC, Jones T (2012) Oxygen metabolism, oxygen extraction and positron emission tomography: historical perspective and impact on basic and clinical neuroscience. Neuroimage 61(2):492–504

    Article  PubMed  Google Scholar 

  27. Angleys H, Østergaard L, Jespersen SN (2015) The effects of capillary transit time heterogeneity (CTH) on brain oxygenation. J Cereb Blood Flow Metab 35(5):806–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu S, Connor J, Peterson S, Shuttleworth CW, Liu KJ (2002) Direct visualization of trapped erythrocytes in rat brain after focal ischemia and reperfusion. J Cereb Flow Metab 10:1222–1230

    Article  Google Scholar 

  29. Zhang ZG, Chopp M, Goussev A et al (1999) Cerebral microvascular obstruction by fibrin is associated with upregulation of PAI-1 acutely after onset of focal embolic ischemia in rats. J Neurosci 19(24):10898–10907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15(9):1031–1037

    Article  CAS  PubMed  Google Scholar 

  31. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwon I, Kim EH, del Zoppo GJ, Heo JH (2009) Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. J Neurosci Res 87(3):668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ames A 3rd, Wright LW, Kowada M, Thurston JM, Majors G (1968) Cerebral ischemia, II: the no-reflow phenomenon. Am J Pathol 52:437–453

  34. Srinivasan VJ, Mandeville ET, Can A et al (2013) Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke. PLoS One 8(8):e71478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goyal M, Menon BK, Almekhlafi MA, Demchuk A, Hill MD (2017) The need for better data on patients with acute stroke who are not treated because of unfavorable imaging. AJNR Am J Neuroradiol 38(3):424–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Federau C, Mlynash M, Christensen S et al (2016) Evolution of volume and signal intensity on fluid-attenuated inversion recovery MR images after endovascular stroke therapy. Radiology 280(1):184–192

    Article  PubMed  Google Scholar 

  37. Krongold M, Almekhlafi MA, Demchuk AM, Coutts SB, Frayne R, Eilaghi A (2015) Final infarct volume estimation on 1-week follow-up MR imaging is feasible and is dependent on recanalization status. Neuroimage Clin 7:1–6

  38. Larsson HBW, Vestergaard MB, Lindberg U, Iversen HK, Cramer SP (2017) Brain capillary transit time heterogeneity in healthy volunteers measured by dynamic contrast-enhanced T1 -weighted perfusion MRI. J Magn Reson Imaging 45(6):1809–1820

    Article  PubMed  Google Scholar 

  39. Kidwell CS, Jahan R, Gornbein J et al (2013) A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 368:91

    Article  CAS  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mundiyanapurath.

Ethics declarations

Guarantor

The scientific guarantor of this publication is S. Mundiyanapurath.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

The study population differs by only eight patients (in whom PWI quality was not sufficient for CTH analysis) from the cohort in a preceding work by Mundiyanapurath et al [7]. While this preceding work concentrated on the effect of perfusion-diffusion mismatch early or late after symptom onset, we now investigated the role of the perfusion index CTH in regard to the prediction of a favorable outcome and the occurrence of an intracranial hemorrhage after endovascular thrombectomy.

Methodology

• retrospective

• diagnostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potreck, A., Loebel, S., Pfaff, J. et al. Increased volumes of mildly elevated capillary transit time heterogeneity positively predict favorable outcome and negatively predict intracranial hemorrhage in acute ischemic stroke with large vessel occlusion. Eur Radiol 29, 3523–3532 (2019). https://doi.org/10.1007/s00330-019-06064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06064-4

Keywords

Navigation