Skip to main content
Log in

Late gadolinium enhancement cardiac imaging on a 3T scanner with parallel RF transmission technique: prospective comparison of 3D-PSIR and 3D-IR

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To qualitatively and quantitatively compare different late gadolinium enhancement (LGE) sequences acquired at 3T with a parallel RF transmission technique.

Methods

One hundred and sixty participants prospectively enrolled underwent a 3T cardiac MRI with 3 different LGE sequences: 3D Phase-Sensitive Inversion-Recovery (3D-PSIR) acquired 5 minutes after injection, 3D Inversion-Recovery (3D-IR) at 9 minutes and 3D-PSIR at 13 minutes. All LGE-positive patients were qualitatively evaluated both independently and blindly by two radiologists using a 4-level scale, and quantitatively assessed with measurement of contrast-to-noise ratio and LGE maximal surface. Statistical analyses were calculated under a Bayesian paradigm using MCMC methods.

Results

Fifty patients (70 % men, 56yo ± 19) exhibited LGE (62 % were post-ischemic, 30 % related to cardiomyopathy and 8 % post-myocarditis). Early and late 3D-PSIR were superior to 3D-IR sequences (global quality, estimated coefficient IR > early-PSIR : -2.37 CI = [-3.46 ; -1.38], prob(coef > 0) = 0 % and late-PSIR > IR : 3.12 CI = [0.62 ; 4.41], prob(coef > 0) = 100 %), LGE surface estimated coefficient IR > early-PSIR: -0.09 CI = [-1.11; -0.74], prob(coef > 0) = 0 % and late-PSIR > IR : 0.96 CI = [0.77; 1.15], prob(coef > 0) = 100 %). Probabilities for late PSIR being superior to early PSIR concerning global quality and CNR were over 90 %, regardless of the aetiological subgroup.

Conclusions

In 3T cardiac MRI acquired with parallel RF transmission technique, 3D-PSIR is qualitatively and quantitatively superior to 3D-IR.

Key Points

Late gadolinium enhancement is an essential part of a cardiac MRI examination

PSIR and IR sequences are the two possible options for LGE imaging

At 3T with parallel RF transmission, PSIR sequences are significantly better

One LGE sequence is sufficient, allowing an optimization of the acquisition time

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CMR:

Cardiac magnetic resonance

CNR:

Contrast to noise ratio

LGE:

Late Gadolinium enhancement

RF:

Radiofrequency

TI:

Inversion time

References

  1. American College of Cardiology Foundation Task Force on Expert Consensus D, Hundley WG, Bluemke DA et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55:2614–2662

    Article  Google Scholar 

  2. Wu KC (2009) Variation on a theme: CMR as the "one-stop shop" for risk stratification after infarction? J Am Coll Cardiol Img 2:843–845

    Article  Google Scholar 

  3. Pennell DJ, Sechtem UP, Higgins CB et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J 25:1940–1965

    Article  PubMed  Google Scholar 

  4. Rehwald WG, Wagner A, Sievers B, Kim RJ, Judd RM (2007) Cardiovascular MRI: its current and future use in clinical practice. Expert Rev Cardiovasc Ther 5:307–321

    Article  PubMed  Google Scholar 

  5. Flett AS, Hasleton J, Cook C et al (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. J Am Coll Cardiol Img 4:150–156

    Article  Google Scholar 

  6. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  7. Klem I, Heitner JF, Shah DJ et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47:1630–1638

    Article  PubMed  Google Scholar 

  8. Laissy JP, Pasi N, Bazeli R, Schouman-Claeys E, Serfaty JM (2010) Delayed myocardial enhancement and diagnosis of acute coronary syndrome with normal coronarography. J Radiol 91:602–608

    Article  CAS  PubMed  Google Scholar 

  9. Silvera S, Palangie E, Marmursztejn J et al (2010) Which non-ischemic myocardial diseases show delayed enhancement, and what are their imaging characteristics. J Radiol 91:609–614

    Article  CAS  PubMed  Google Scholar 

  10. Weaver JC, McCrohon JA (2008) Contrast-enhanced cardiac MRI in myocardial infarction. Heart Lung Circ 17:290–298

    Article  PubMed  Google Scholar 

  11. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized P (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:91

    Google Scholar 

  12. Jacquier A, Bartoli B, Flavian A et al (2010) Delayed myocardial enhancement: optimizing the MR imaging protocol. J Radiol 91:598–601

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Kim D, Otazo R et al (2013) Towards a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging with a 32-element coil array: feasibility and initial comparative evaluation. J Magn Reson Imaging JMRI 38:180–188

    Article  PubMed  Google Scholar 

  14. Cheng AS, Selvanayagam JB (2010) High field cardiac magnetic resonance imaging--current and future perspectives. Heart Lung Circ 19:145–153

    Article  PubMed  Google Scholar 

  15. Gerretsen SC, Versluis B, Bekkers SC, Leiner T (2008) Cardiac cine MRI: comparison of 1.5 T, non-enhanced 3.0 T and blood pool enhanced 3.0 T imaging. Eur J Radiol 65:80–85

    Article  CAS  PubMed  Google Scholar 

  16. Gutberlet M, Noeske R, Schwinge K, Freyhardt P, Felix R, Niendorf T (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41:154–167

    Article  PubMed  Google Scholar 

  17. Willinek WA, Schild HH (2008) Clinical advantages of 3.0 T MRI over 1.5 T. Eur J Radiol 65:2–14

    Article  PubMed  Google Scholar 

  18. Rajiah P, Bolen MA (2014) Cardiovascular MR imaging at 3 T: opportunities, challenges, and solutions. Radiographics 34:1612–1635

    Article  PubMed  Google Scholar 

  19. Wieben O, Francois C, Reeder SB (2008) Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 65:15–28

    Article  PubMed  Google Scholar 

  20. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  21. Ronald Christensen WJ, Branscum A, Hanson TE (2010) Bayesian ideas and data analysis: an introduction for scientists and statisticians. CRC Press

  22. Freedman L (1996) Bayesian statistical methods. BMJ 313:569–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ntzoufras I (2009) Bayesian modelling using WinBUGS. Wiley, Hoboken

    Book  Google Scholar 

  24. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  25. Chen X, Lu M, Yin G et al (2013) Three-dimensional phase-sensitive inversion-recovery Turbo FLASH sequence for the assessment of left ventricular myocardial scar in swine. PLoS One 8, e78305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kino A, Keeling AN, Farrelly CT et al (2011) Assessment of left ventricular myocardial scar in infiltrative and non-ischemic cardiac diseases by free breathing three dimensional phase sensitive inversion recovery (PSIR) TurboFLASH. Int J Cardiovasc Imaging 27:527–537

    Article  PubMed  Google Scholar 

  27. Kino A, Zuehlsdorff S, Sheehan JJ et al (2009) Three-dimensional phase-sensitive inversion-recovery turbo FLASH sequence for the evaluation of left ventricular myocardial scar. AJR Am J Roentgenol 193:W381–W388

    Article  PubMed  Google Scholar 

  28. Jablonowski R, Nordlund D, Kanski M et al (2013) Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo. BMC Cardiovasc Disord 13:110

    Article  PubMed  PubMed Central  Google Scholar 

  29. Elgeti T, Abdel-Aty H, Wagner M et al (2007) Assessment of late gadolinium enhancement in nonischemic cardiomyopathy: comparison of a fast Phase-Sensitive Inversion Recovery Sequence (PSIR) and a conventional segmented 2D gradient echo recall (GRE) sequence--preliminary findings. Invest Radiol 42:671–675

    Article  PubMed  Google Scholar 

  30. Huber A, Bauner K, Wintersperger BJ et al (2006) Phase-sensitive inversion recovery (PSIR) single-shot TrueFISP for assessment of myocardial infarction at 3 tesla. Invest Radiol 41:148–153

    Article  PubMed  Google Scholar 

  31. Kido T, Kido T, Nakamura M et al (2014) Three-dimensional phase-sensitive inversion recovery sequencing in the evaluation of left ventricular myocardial scars in ischemic and non-ischemic cardiomyopathy: comparison to three-dimensional inversion recovery sequencing. Eur J Radiol 83:2159–2166

    Article  PubMed  Google Scholar 

  32. Morita K, Utsunomiya D, Oda S et al (2013) Comparison of 3D phase-sensitive inversion-recovery and 2D inversion-recovery MRI at 3.0 T for the assessment of late gadolinium enhancement in patients with hypertrophic cardiomyopathy. Acad Radiol 20:752–757

    Article  PubMed  Google Scholar 

  33. Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400

    Article  PubMed  Google Scholar 

  34. Willinek WA, Gieseke J, Kukuk GM et al (2010) Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 256:966–975

    Article  PubMed  Google Scholar 

  35. Nelles M, Konig RS, Gieseke J et al (2010) Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T: intraindividual comparison with conventional single-source transmission. Radiology 257:743–753

    Article  PubMed  Google Scholar 

  36. Krishnamurthy R, Pednekar A, Kouwenhoven M, Cheong B, Muthupillai R (2013) Evaluation of a subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:68

    Google Scholar 

  37. Mueller A, Kouwenhoven M, Naehle CP et al (2012) Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging: initial experience. Radiology 263:77–85

    Article  PubMed  Google Scholar 

  38. Strach K, Clauberg R, Muller A et al (2013) Feasibility of high-dose dobutamine stress SSFP Cine MRI at 3 Tesla with patient adaptive local RF Shimming using dual-source RF transmission: initial results. Röfo 185:34–39

    CAS  PubMed  Google Scholar 

  39. Jia H, Wang C, Wang G et al (2013) Impact of 3.0 T Cardiac MR Imaging Using Dual-Source Parallel Radiofrequency Transmission with Patient-Adaptive B1 Shimming. PLoS One 8, e66946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 5:505–514

    Google Scholar 

  42. Doltra A, Skorin A, Hamdan A et al (2014) Comparison of acquisition time and dose for late gadolinium enhancement imaging at 3.0 T in patients with chronic myocardial infarction using Gd-BOPTA. Eur Radiol 24:2192–2200

    Article  CAS  PubMed  Google Scholar 

  43. Laissy JP, Hyafil F, Feldman LJ et al (2005) Differentiating acute myocardial infarction from myocarditis: diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology 237:75–82

    Article  PubMed  Google Scholar 

  44. Kellman P, Arai AE (2012) Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging JMRI 36:529–542

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Pr. Catherine Roy. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors is a biostatistician: Dr. Mickaël Schaeffer. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported. Methodology: prospective, observational, performed at one institution.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Schultz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, A., Caspar, T., Schaeffer, M. et al. Late gadolinium enhancement cardiac imaging on a 3T scanner with parallel RF transmission technique: prospective comparison of 3D-PSIR and 3D-IR. Eur Radiol 26, 1547–1555 (2016). https://doi.org/10.1007/s00330-015-4002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4002-y

Keywords

Navigation