Skip to main content

Advertisement

Log in

Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Intravital imaging within heterogenic solid tumours is important for understanding blood perfusion profiles responsible for establishment of multiple parameters within the tumour mass, such as hypoxic and nutrition gradients, cell viability, proliferation and drug response potentials.

Methods

Herein, we developed a method based on a volumetric multispectral optoacoustic tomography (vMSOT) for cancer imaging in preclinical models and explored its capacity for three-dimensional imaging of anatomic, vascular and functional tumour profiles in real time.

Results

In contrast to methods based on cross-sectional (2D) image acquisition as a basis for 3D rendering, vMSOT has attained concurrent observations from the entire tumour volume at 10 volumetric frames per second. This truly four dimensional imaging performance has enabled here the simultaneous assessment of blood oxygenation gradients and vascularization in solid breast tumours and revealed different types of blood perfusion profiles in-vivo.

Conclusion

The newly introduced capacity for high-resolution three-dimensional tracking of fast tumour perfusion suggests vMSOT as a powerful method in preclinical cancer research and theranostics. As the imaging setup can be equally operated in both stationary and handheld mode, the solution is readily translatable for perfusion monitoring in a clinical setting.

Key Points

vMSOT visualizes 3D anatomic, vascular and functional tumour profiles in real time.

Three types of blood perfusion profiles are revealed in breast tumour model.

The method is readily adaptable to operate in a handheld clinical mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawson SJ, Rueda OM, Aparicio S, Caldas C (2013) A new genome-driven integrated classification of breast cancer and its implications. EMBO J 32:617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bosetti C, Bertuccio P, Malvezzi M et al (2013) Cancer mortality in Europe, 2005-2009, and an overview of trends since 1980. Ann Oncol 24:2657–2671

    Article  CAS  PubMed  Google Scholar 

  3. Wojnar A, Bartosz Pula B, Podhorska-Okolow M, Dziegiel P (2013) Discrepancies between HER2 assessment from core needle biopsies and surgical specimens of invasive ductal breast carcinoma. Adv Clin Exp Med 22:27–31

    PubMed  Google Scholar 

  4. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  CAS  PubMed  Google Scholar 

  5. Galmarini FC, Galmarini CM, Sarchi MI, Abulafia J, Galmarini D (2000) Heterogeneous distribution of tumor blood supply affects the response to chemotherapy in patients with head and neck cancer. Microcirculation 7:405–410

    Article  CAS  PubMed  Google Scholar 

  6. Alberti C (2012) From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci 16:1925–1933

    CAS  PubMed  Google Scholar 

  7. Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V (2012) FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods 9:615–620

    Article  CAS  PubMed  Google Scholar 

  8. Alshetaiwi HS, Balivada S, Shrestha TB et al (2013) Luminol-based bioluminescence imaging of mouse mammary tumors. J Photochem Photobiol B 127:223–228

    Article  CAS  PubMed  Google Scholar 

  9. Han XJ, Sun LF, Nishiyama Y et al (2013) Theranostic protein targeting ErbB2 for bioluminescence imaging and therapy for cancer. PLoS One 8:e75288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  CAS  PubMed  Google Scholar 

  12. Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794

    Article  CAS  PubMed  Google Scholar 

  13. Buehler A, Herzog E, Razansky D, Ntziachristos V (2010) Video rate optoacoustic tomography of mouse kidney perfusion. Opt Lett 35:2475–2477

    Article  PubMed  Google Scholar 

  14. Herzog E, Taruttis A, Beziere N, Lutich AA, Razansky D, Ntziachristos V (2012) Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263:461–468

    Article  PubMed  Google Scholar 

  15. Kirscher L, Deán-Ben XL, Scadeng M, Zaremba A, Zhang Q, Kober C et al (2015) Doxycycline inducible melanogenic vaccinia virus as theranostic anti-cancer agent. Theranostics 5:1045–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taruttis A, Wildgruber M, Kosanke K, Beziere N, Licha K, Haag R et al (2012) Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics 1:3–8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Laufer J, Johnson P, Zhang E et al (2012) In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J Biomed Opt 17:056016

    Article  PubMed  Google Scholar 

  18. Nasiriavanaki M, Xia J, Wan H, Bauer AQ, Culver JP, Wang LV (2014) High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci U S A 111:21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Razansky D, Harlaar NJ, Hillebrands JL et al (2012) Multispectral optoacoustic tomography of matrix metalloproteinase activity in vulnerable human carotid plaques. Mol Imaging Biol 14:277–285

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mallidi S, Kim S, Karpiouk A, Joshi PP, Sokolov K, Emelianov S (2015) Visualization of molecular composition and functionality of cancer cells using nanoparticle-augmented ultrasound-guided photoacoustics. Photoacoustics 3:26–34

    Article  PubMed  PubMed Central  Google Scholar 

  21. Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6:1121–1129

    Article  CAS  PubMed  Google Scholar 

  22. Xia J, Chatni MR, Maslov K et al (2012) Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J Biomed Opt 17:050506

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buehler A, Deán-Ben XL, Razansky D, Ntziachristos V (2013) Volumetric optoacoustic imaging with multi-bandwidth deconvolution. IEEE Trans Med Imaging 33:814–821

    Article  PubMed  Google Scholar 

  24. Queiros D, Deán-Ben XL, Buehler A, Razansky D, Rosenthal A, Ntziachristos V (2013) Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography. J Biomed Opt 18:76014

    Article  Google Scholar 

  25. Brecht HP, Su R, Fronheiser M, Ermilov SA, Conjusteau A, Oraevsky AA (2009) Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt 14:064007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Van de Sompel D, Sasportas LS, Dragulescu-Andrasi A, Bohndiek S, Gambhir SS (2012) Improving image quality by accounting for changes in water temperature during a photoacoustic tomography scan. PLoS One 7:e45337

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deán-Ben XL, Razansky D (2013) Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter scale depths. Opt Express 21:28062–28071

    Article  PubMed  Google Scholar 

  28. Deán Ben XL, Oezbek A, Razansky D (2013) Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans Med Imaging 32:2050–2055

    Article  PubMed  Google Scholar 

  29. Deán-Ben XL, Ntziachristos V, Razansky D (2012) Acceleration of optoacoustic model-based reconstruction using angular image discretization. IEEE Trans Med Imaging 31:1154–1162

    Article  PubMed  Google Scholar 

  30. Razansky D, Distel M, Vinegoni C et al (2009) Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photonics 3:412–417

    Article  CAS  Google Scholar 

  31. Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K et al (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424

    Article  CAS  PubMed  Google Scholar 

  32. Sarantopoulos A, Themelis G, Ntziachristos V (2011) Imaging the bio-distribution of fluorescent probes using multispectral epi-illumination cryoslicing imaging. Mol Imaging Biol 13:874–885

    Article  PubMed  Google Scholar 

  33. Lillie RD, Pizzolato P, Donaldson PT (1976) Nuclear stains with soluble metachrome metal mordant dye lakes. The effect of chemical endgroup blocking reactions and the artificial introduction of acid groups into tissues. Histochemistry 49:23–35

    Article  CAS  PubMed  Google Scholar 

  34. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37–R61

    Article  PubMed  Google Scholar 

  35. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yitta S, Joe BN, Wisner DJ, Price ER, Hylton NM (2013) Recognizing artifacts and optimizing breast MRI at 1.5 and 3 T. AJR Am J Roentgenol 200:W673–W682

    Article  PubMed  Google Scholar 

  37. Bauerle T, Komljenovic D, Berger MR, Semmler W (2012) Multi-modal imaging of angiogenesis in a nude rat model of breast cancer bone metastasis using magnetic resonance imaging, volumetric computed tomography and ultrasound. J Vis Exp. doi:10.3791/4178:e4178

    PubMed  PubMed Central  Google Scholar 

  38. Buehler A, Herzog E, Ale A, Smith BA, Ntziachristos V, Razansky D (2012) High resolution targeting of tumor apoptosis in living mice by means of multispectral optoacoustic tomography. Eur J Nucl Med Mol Imaging Res 2:14

    Google Scholar 

  39. Lutzweiler C, Razansky D (2013) Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors 13:7345–7384

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deán Ben XL, Fehm TF, Gostic M, Razansky D (2015) Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast. J Biophotonics. doi:10.1002/jbio.201500008

    Google Scholar 

Download references

Acknowledgments

The authors thank Sarah Glasl and Uwe Klemm for excellent technical assistance.

The scientific guarantor of this publication is Daniel Razansky, Helmholtz Zentrum Muenchen, email: dr@tum.de. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by European Research Council under grant agreement ERC-2010-StG-260991. VN acknowledges funding from the German Federal Ministry of Education and Science (BMBF) research grant MOBIMED (Molecular Imaging in Medicine) and sub-grant MOBITUM (Watching Tumour Biology by Molecular Imaging). No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was not required for this study because no patients were involved. Approval from the institutional animal care committee was obtained. Methodology: prospective, experimental, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Razansky.

Additional information

Vladimir Ermolayev and Xose Luis Deán-Ben contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Video 1

(MPG 6960 kb)

Supplementary Video 2

(MPG 2272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolayev, V., Dean-Ben, X.L., Mandal, S. et al. Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography. Eur Radiol 26, 1843–1851 (2016). https://doi.org/10.1007/s00330-015-3980-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3980-0

Keywords