Skip to main content
Log in

Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist.

Methods

Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T2-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T2, Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (Ktrans,Kep,Ve), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer.

Results

Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively.

Conclusion

The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data.

Key Points

The combined model increases diagnostic accuracy in prostate cancer compared with individual parameters

The optimal combined model includes parameters from diffusion, spectroscopy, perfusion, and anatominal MRI

The computed model improves tumour detection compared to an expert viewing parametric maps

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent Diffusion Coefficient

CG:

Central Gland

DCE-MRI:

Dynamic Contrast-Enhanced MRI

DWI:

Diffusion Weighted Imaging

PZ:

Peripheral Zone

T2W:

T2-weighted

MRSI:

Magnetic Resonance Spectroscopic Imaging

LDA:

Linear Discriminant Analysis

IAUGC:

Initial Area Under Gadolinium Curve

References

  1. Roethke MC, Kniess M, Kaufmann S et al (2014) Can high-spatial resolution T2-weighted endorectal MRI rule out clinically significant prostate cancer? World J Urol 32:379–383

    Article  PubMed  Google Scholar 

  2. Yamamura J, Salomon G, Buchert R et al (2011) Magnetic resonance imaging of prostate cancer: diffusion-weighted imaging in comparison with sextant biopsy. J Comput Assist Tomogr 35:223–228

    Article  PubMed  Google Scholar 

  3. Nagayama M, Watanabe Y, Terai A et al (2011) Determination of the cutoff level of apparent diffusion coefficient values for detection of prostate cancer. Jpn J Radiol 29:488–494

    Article  PubMed  Google Scholar 

  4. Mazaheri Y, Hricak H, Fine SW et al (2009) Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology 252:449–457

    Article  PubMed Central  PubMed  Google Scholar 

  5. Langer DL, van der Kwast TH, Evans AJ et al (2009) Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:327–334

    Article  PubMed  Google Scholar 

  6. Bittencourt LK, Barentsz JO, de Miranda LC, Gasparetto EL (2012) Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason Grades than TRUS-guided biopsies in peripheral zone tumours. Eur Radiol 22:468–475

    Article  PubMed  Google Scholar 

  7. Oto A, Yang C, Kayhan A et al (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197:1382–1390

    Article  PubMed  Google Scholar 

  8. Langer DL, van der Kwast TH, Evans AJ et al (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255:485–494

    Article  PubMed  Google Scholar 

  9. Jackson AS, Reinsberg SA, Sohaib SA et al (2009) Dynamic contrast-enhanced MRI for prostate cancer localization. Br J Radiol 82:148–156

    Article  CAS  PubMed  Google Scholar 

  10. Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626

    Article  PubMed  Google Scholar 

  11. Yamamura J, Salomon G, Buchert R et al (2011) MR imaging of prostate cancer: diffusion weighted imaging and (3D) hydrogen 1 (H) MR spectroscopy in comparison with histology. Radiol Res Pract 2011:616852

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Reinsberg SA, Payne GS, Riches SF et al (2007) Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 188:91–98

    Article  PubMed  Google Scholar 

  13. Weinreb JC, Blume JD, Coakley FV et al (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251:122–133

    Article  PubMed Central  PubMed  Google Scholar 

  14. Scheenen TW, Futterer J, Weiland E et al (2011) Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Investig Radiol 46:25–33

    Article  Google Scholar 

  15. Garcia-Martin ML, Adrados M, Ortega MP et al (2011) Quantitative (1) H MR spectroscopic imaging of the prostate gland using LCModel and a dedicated basis-set: correlation with histologic findings. Magn Reson Med 65:329–339

    Article  CAS  PubMed  Google Scholar 

  16. Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 255:89–99

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kumar V, Jagannathan NR, Kumar R et al (2006) Correlation between metabolite ratios and ADC values of prostate in men with increased PSA level. Magn Reson Imaging 24:541–548

    Article  CAS  PubMed  Google Scholar 

  18. Groenendaal G, Borren A, Moman MR et al (2012) Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 82:e537–e544

    Article  PubMed  Google Scholar 

  19. Futterer JJ, Heijmink SW, Scheenen TW et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458

    Article  PubMed  Google Scholar 

  20. de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 202:343–351

    Article  PubMed  Google Scholar 

  21. Borren A, Groenendaal G, Moman MR et al (2014) Accurate prostate tumour detection with multiparametric magnetic resonance imaging: dependence on histological properties. Acta Oncol 53:88–95

    Article  PubMed  Google Scholar 

  22. Riches SF, Payne GS, Morgan VA et al (2009) MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 193:1583–1591

    Article  PubMed  Google Scholar 

  23. Altman DG (1990) Practical Statistics for Medical Research. Taylor & Francis.

  24. d’Arcy JA, Collins DJ, Padhani AR et al (2006) Magnetic Resonance Imaging Workbench: analysis and visualization of dynamic contrast-enhanced MR imaging data. Radiographics 26:621–632

    Article  PubMed  Google Scholar 

  25. Orton MR, d'Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239

    Article  PubMed  Google Scholar 

  26. Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000

    Article  PubMed  Google Scholar 

  27. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig Radiol 40:715–724

    Article  Google Scholar 

  28. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Article  CAS  PubMed  Google Scholar 

  29. Jhavar SG, Fisher C, Jackson A et al (2005) Processing of radical prostatectomy specimens for correlation of data from histopathological, molecular biological, and radiological studies: a new whole organ technique. J Clin Pathol 58:504–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757

    Article  PubMed Central  PubMed  Google Scholar 

  31. Selnaes KM, Heerschap A, Jensen LR et al (2012) Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Investig Radiol 47:624–633

    Article  Google Scholar 

  32. Shah V, Turkbey B, Mani H et al (2012) Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Med Phys 39:4093–4103

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wefer AE, Hricak H, Vigneron DB et al (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 164:400–404

    Article  CAS  PubMed  Google Scholar 

  34. Mazaheri Y, Shukla-Dave A, Hricak H et al (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging–correlation with pathologic findings. Radiology 246:480–488

    Article  PubMed  Google Scholar 

  35. Le Nobin J, Orczyk C, Deng FM et al (2014) Prostate Tumor Volumes: Agreement Between MRI and Histology Using Novel Co-registration Software. BJU Int.

  36. Reisaeter LA, Futterer JJ, Halvorsen OJ et al (2014) 1.5-T multiparametric MRI using PI-RADS: a region by region analysis to localize the index-tumor of prostate cancer in patients undergoing prostatectomy. Acta Radiol.

  37. Engelbrecht MR, Huisman HJ, Laheij RJ et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254

    Article  PubMed  Google Scholar 

  38. Padhani AR, Gapinski CJ, Macvicar DA et al (2000) Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55:99–109

    Article  CAS  PubMed  Google Scholar 

  39. Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J (2008) Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 26:1071–1080

    Article  PubMed Central  PubMed  Google Scholar 

  40. Kozlowski P, Chang SD, Jones EC et al (2006) Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis–correlation with biopsy and histopathology. J Magn Reson Imaging 24:108–113

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Prof Nandita deSouza. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding for the CRUK & EPSRC Cancer Imaging Centre in association with MRC and Dept of Health C1060/A10334 & NHS funding to the NIHR Biomedical Research Centre and the Clinical Research Facility in Imaging. Sophie Riches was funded by a Personal Award Scheme Researcher Developer Award from the National Institute for Health Research. Scott Morgan was funded by a research fellowship from the Canadian Association of Radiation Oncology and Elekta AB. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: Prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Riches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riches, S.F., Payne, G.S., Morgan, V.A. et al. Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters. Eur Radiol 25, 1247–1256 (2015). https://doi.org/10.1007/s00330-014-3479-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3479-0

Keywords

Navigation