Skip to main content
Log in

Macrocyclic contrast agents for magnetic resonance imaging of chronic myocardial infarction: intraindividual comparison of gadobutrol and gadoterate meglumine

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare 0.15 mmol/kg gadobutrol for late gadolinium enhancement (LGE) imaging of chronic myocardial infarction with a relaxivity-adjusted dose of gadoterate meglumine (Gd-DOTA).

Methods

Seventeen patients with suspected chronic myocardial infarction underwent LGE imaging at 1.5 T, acquiring an inversion-recovery-prepared gradient echo sequence 15 min after contrast agent administration. Each patient underwent LGE imaging twice, once after administration of 0.15 mmol/kg gadobutrol (r1 = 5.2 l mmol-1 s-1) and after 0.22 mmol/kg Gd-DOTA (r1 = 3.6 l mmol-1 s-1). Two readers independently determined infarct size and contrast-to-noise ratios of infarcted myocardium to remote myocardium (CNRremote) and to the left ventricular lumen (CNRlumen).

Results

LGE was present in 14 patients. Infarct sizes determined after administration of gadobutrol [23.4 ml; 95 % CI (14.4; 32.5)] and Gd-DOTA [22.1 ml; 95 % CI (13.0; 31.1)] were not statistically different (P = 0.22). The CNRremote of LGE in infarcted myocardium on gadobutrol- and Gd-DOTA-enhanced images was 44.1 [95 % CI (31.0; 57.1)] and 45.2 [95 % CI (32.2; 58.3)], respectively (P = 0.73). CNRlumen was significantly higher on gadobutrol-enhanced LGE images [12.7; 95 % CI (2.5; 23.0) versus 6.8; 95 % CI (-3.5; 17.0); P = 0.02].

Conclusion

At relaxivity-adjusted doses, gadobutrol and Gd-DOTA yielded similar infarct sizes with superior contrast between infarcted myocardium and left ventricular lumen on gadobutrol-enhanced images.

Key points

Contrast-enhanced magnetic resonance imaging is increasingly used to assess the myocardium

Macrocyclic Gd-based contrast agents are considered to be safer than linear agents

Myocardial infarction MRI can be performed using either gadobutrol or gadoterate meglumine

Contrast between infarcted myocardium and the left ventricular lumen was greater using gadobutrol

The minimum macrocyclic dose needed for reliable LGE imaging requires further evaluation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  2. Judd RM, Lugo-Olivieri CH, Arai M et al (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    Article  PubMed  CAS  Google Scholar 

  3. Wesbey GE, Higgins CB, McNamara MT et al (1984) Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology 153:165–169

    PubMed  CAS  Google Scholar 

  4. Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  5. Wong DT, Richardson JD, Puri R et al (2012) The role of cardiac magnetic resonance imaging following acute myocardial infarction. Eur Radiol. doi:10.1007/s00330-012-2420-7

  6. Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    Article  PubMed  CAS  Google Scholar 

  7. McNamara MT, Higgins CB, Ehman RL, Revel D, Sievers R, Brasch RC (1984) Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA. Radiology 153:157–163

    PubMed  CAS  Google Scholar 

  8. Pereira RS, Prato FS, Wisenberg G, Sykes J (1996) The determination of myocardial viability using Gd-DTPA in a canine model of acute myocardial ischemia and reperfusion. Magn Reson Med 36:684–693

    Article  PubMed  CAS  Google Scholar 

  9. de Roos A, van Rossum AC, van der Wall E et al (1989) Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA–enhanced MR imaging. Radiology 172:717–720

    PubMed  Google Scholar 

  10. Goetti R, Feuchtner G, Stolzmann P et al (2011) Delayed enhancement imaging of myocardial viability: low-dose high-pitch CT versus MRI. Eur Radiol 21:2091–2099

    Article  PubMed  Google Scholar 

  11. Gerbaud E, Montaudon M, Leroux L et al (2008) MRI for the diagnosis of left ventricular apical ballooning syndrome (LVABS). Eur Radiol 18:947–954

    Article  PubMed  Google Scholar 

  12. Comte A, Kastler B, Laborie L, Hadjidekov G, Meneveau N, Boulahdour H (2008) Using a contrast-enhanced imaging sequence at 3-minute delay in 3-T magnetic resonance imaging for acute infarct evaluation. Invest Radiol 43:669–675

    Article  PubMed  Google Scholar 

  13. Matsumoto H, Matsuda T, Miyamoto K et al (2010) Late gadolinium-enhanced cardiovascular MRI at end-systole: feasibility study. AJR Am J Roentgenol 195:1088–1094

    Article  PubMed  Google Scholar 

  14. Leurent G, Langella B, Fougerou C et al (2011) Diagnostic contributions of cardiac magnetic resonance imaging in patients presenting with elevated troponin, acute chest pain syndrome and unobstructed coronary arteries. Arch Cardiovasc Dis 104:161–170

    Article  PubMed  Google Scholar 

  15. Meyer C, Strach K, Thomas D et al (2008) High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease. Eur Radiol 18:226–233

    Article  PubMed  Google Scholar 

  16. Pujadas S, Vidal-Perez R, Hidalgo A et al (2010) Correlation between myocardial fibrosis and the occurrence of atrial fibrillation in hypertrophic cardiomyopathy: a cardiac magnetic resonance imaging study. Eur J Radiol 75:e88–e91

    Article  PubMed  CAS  Google Scholar 

  17. Thiele H, Hildebrand L, Schirdewahn C et al (2010) Impact of high-dose N-acetylcysteine versus placebo on contrast-induced nephropathy and myocardial reperfusion injury in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. The LIPSIA-N-ACC (Prospective, Single-Blind, Placebo-Controlled, Randomized Leipzig Immediate PercutaneouS Coronary Intervention Acute Myocardial Infarction N-ACC) trial. J Am Coll Cardiol 55:2201–2209

    Article  PubMed  CAS  Google Scholar 

  18. Lonborg J, Vejlstrup N, Mathiasen AB, Thomsen C, Jensen JS, Engstrom T (2011) Myocardial area at risk and salvage measured by T2-weighted cardiovascular magnetic resonance: reproducibility and comparison of two T2-weighted protocols. J Cardiovasc Magn Reson 13:50

    Article  PubMed  Google Scholar 

  19. Durmus T, Schilling R, Doeblin P et al (2012) Gadobutrol for magnetic resonance imaging of chronic myocardial infarction: intraindividual comparison with gadopentetate dimeglumine. Invest Radiol 47:183–188

    PubMed  Google Scholar 

  20. Bondarenko O, Beek AM, Hofman MB et al (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485

    Article  PubMed  Google Scholar 

  21. Ortiz-Perez JT, Rodriguez J, Meyers SN, Lee DC, Davidson C, Wu E (2008) Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging 1:282–293

    Article  PubMed  Google Scholar 

  22. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  23. Masoudi FA, Plomondon ME, Magid DJ, Sales A, Rumsfeld JS (2004) Renal insufficiency and mortality from acute coronary syndromes. Am Heart J 147:623–629

    Article  PubMed  Google Scholar 

  24. Frenzel T, Lengsfeld P, Schirmer H, Hutter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43:817–828

    Article  PubMed  CAS  Google Scholar 

  25. Rofsky NM, Sherry AD, Lenkinski RE (2008) Nephrogenic systemic fibrosis: a chemical perspective. Radiology 247:608–612

    Article  PubMed  Google Scholar 

  26. Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30:1298–1308

    Article  PubMed  Google Scholar 

  27. Chrysochou C, Buckley DL, Dark P, Cowie A, Kalra PA (2009) Gadolinium-enhanced magnetic resonance imaging for renovascular disease and nephrogenic systemic fibrosis: critical review of the literature and UK experience. J Magn Reson Imaging 29:887–894

    Article  PubMed  Google Scholar 

  28. Altun E, Semelka RC, Cakit C (2009) Nephrogenic systemic fibrosis and management of high-risk patients. Acad Radiol 16:897–905

    Article  PubMed  Google Scholar 

  29. Bauner KU, Reiser MF, Huber AM (2009) Low dose gadobenate dimeglumine for imaging of chronic myocardial infarction in comparison with standard dose gadopentetate dimeglumine. Invest Radiol 44:95–104

    Article  PubMed  CAS  Google Scholar 

  30. Schlosser T, Hunold P, Herborn CU et al (2005) Myocardial infarct: depiction with contrast-enhanced MR imaging–comparison of gadopentetate and gadobenate. Radiology 236:1041–1046

    Article  PubMed  Google Scholar 

  31. Balci NC, Inan N, Anik Y, Erturk MS, Ural D, Demirci A (2006) Low-dose gadobenate dimeglumine versus standard-dose gadopentate dimeglumine for delayed contrast-enhanced cardiac magnetic resonance imaging. Acad Radiol 13:833–839

    Article  PubMed  Google Scholar 

  32. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, M., Schilling, R., Doeblin, P. et al. Macrocyclic contrast agents for magnetic resonance imaging of chronic myocardial infarction: intraindividual comparison of gadobutrol and gadoterate meglumine. Eur Radiol 23, 108–114 (2013). https://doi.org/10.1007/s00330-012-2563-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2563-6

Keywords

Navigation