Skip to main content
Log in

Diagnostic usefulness of the oedema-infarct ratio to differentiate acute from chronic myocardial damage using magnetic resonance imaging

European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To differentiate acute from chronic damage to the myocardium in patients with myocardial infarction (MI) using DE and T2w MR.

Methods

Short-axis T2w and DE MR images were acquired twice after the onset of MI in 36 patients who successfully underwent emergency coronary revascularisation. The areas of infarct and oedema were measured. The oedema-infarct ratio (O/I) of the left ventricular area was calculated by dividing the oedema by the infarct area.

Results

The oedema size on T2w MR was significantly larger than the infarct size on DE MR in the acute phase. Both the oedema size on T2w MR and the infarct size on DE MR in the acute phase were significantly larger than those in the chronic phase. The O/I was significantly greater in the acute phase compared with that in the chronic phase (P < 0.05). An analysis of relative cumulative frequency distributions revealed an O/I of 1.4 as a cut-off value for differentiating acute from chronic myocardial damage with the sensitivity, specificity, and accuracy of 85.1%, 82.7% and 83.9%, respectively.

Conclusion

The oedema-infarct ratio may be a useful index in differentiating acute from chronic myocardial damage in patients with MI.

Key Points

MR can differentiate reversible from irreversible myocardial damage after myocardial infarction.

• MR is a useful modality to noninvasively differentiate the infarct stages.

• The O/I is an important index to decide therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107

    Article  PubMed  CAS  Google Scholar 

  2. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ (2001) Visualization of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  PubMed  CAS  Google Scholar 

  3. Mahrholdt H, Wagner A, Holly TA et al (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327

    Article  PubMed  CAS  Google Scholar 

  4. Abdel-Aty H, Zagrosek A, Schulz-Menger J et al (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416

    Article  PubMed  Google Scholar 

  5. DiBona DR, Powell WJ Jr (1980) Quantitative correlation between cell swelling and necrosis in myocardial ischemia in dogs. Circulation Res 47:653–665

    PubMed  CAS  Google Scholar 

  6. Jennings RB, Schaper J, Hill ML, Steenbergen C Jr, Reimer KA (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circulation Res 56:262–278

    PubMed  CAS  Google Scholar 

  7. Abdel-Aty H, Cocker M, Meek C, Tyberg JJ, Friedrich MG (2009) Edema as a very early for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53:1194–1201

    Article  PubMed  CAS  Google Scholar 

  8. Garcia-Dorado D, Oliveras J, Gili J et al (1993) Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res 27:1462–1469

    Article  PubMed  CAS  Google Scholar 

  9. Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black-blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  CAS  Google Scholar 

  10. Lim TH, Hong MK, Lee JS et al (1997) Novel application of breath-hold turbo spin-echo T2 MRI for detection of acute myocardial infarction. J Magn Reson Imaging 7:996–1001

    Article  PubMed  CAS  Google Scholar 

  11. Miller S, Herber U, Kramer U et al (2001) Subacute myocardial infarction: assessment by STIR T2-weighted MR imaging in comparison to regional function. Magma 13:8–14

    Article  PubMed  CAS  Google Scholar 

  12. Nilsson JC, Nielsen G, Groenning BA et al (2001) Sustained postinfarction myocardial oedema in humans visualized by magnetic resonance imaging. Heart 85:639–642

    Article  PubMed  CAS  Google Scholar 

  13. Schulz-Menger J, Gross M, Messroghli D, Uhlich F, Dietz R, Friedrich MG (2003) Cardiovascular magnetic resonance of acute myocardial infarction at a very early stage. J Am Coll Cardiol 42:513–518

    Article  PubMed  Google Scholar 

  14. Stehling MK, Holzknecht NG, Laub G, Bohm D, von Smekal A, Reiser M (1996) Single-shot T1- and T2-weighted magnetic resonance imaging of the heart with black blood: preliminary experience. Magma 4:231–240

    Article  PubMed  CAS  Google Scholar 

  15. Lund GK, Stork A, Saeed M et al (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201 Tl SPECT imaging. Radiology 232:49–57

    Article  PubMed  Google Scholar 

  16. Stork A, Lund GK, Muellerleile K et al (2006) Characterization of the per-infarction zone using T2-weighted MRI and delayed-enhancement MRI in patients with acute myocardial infarction. Eur Radiol 16:2350–2357

    Article  PubMed  Google Scholar 

  17. Stork A, Muellerleile K, Bansmann PM et al (2007) Value of T2-weighted, first-pass and delayed enhancement, and cine CMR to differentiate between acute and chronic myocardial infarction. Eur Radiol 17:610–617

    Article  PubMed  Google Scholar 

  18. Steenbergen C, Hill ML, Jennings RB (1985) Volume regulation and plasma membrane injury in aerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ Res 57:864–875

    PubMed  CAS  Google Scholar 

  19. DiBona DR, Powell WJ Jr (1980) Quantitative correlation between cell swelling and necrosis in myocardial ischemia in dogs. Circ Res 47:653–665

    PubMed  CAS  Google Scholar 

  20. Pereria RS, Prato FS, Sykes J, Wisenberg G (1999) Assessment of myocardial viability using MRI during a constant infusion of Gd-DTPA: further studies at early and late periods of reperfusion. Magn Reson Med 42:60–68

    Article  Google Scholar 

  21. Judd RM, Lugo-Olivieri CH, Arai M et al (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    PubMed  CAS  Google Scholar 

  22. Johnston DL, Homma S, Liu P et al (1988) Serial changes in nuclear magnetic resonance relaxation times after myocardial infarction in the rabbit: relationship to water content, severity of ischemia, and histopathology over a six-month period. Magn Reson Med 8:363–379

    Article  PubMed  CAS  Google Scholar 

  23. Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102

    Article  PubMed  CAS  Google Scholar 

  24. Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R (2008) The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 51:1581–1587

    Article  PubMed  Google Scholar 

  25. Hackel DB, Reimer KA, Ideker RE et al (1984) Comparison of enzymatic and anatomic estimates of myocardial infarct size in man. Circulation 70:824–835

    Article  PubMed  CAS  Google Scholar 

  26. Davis KL, Mehlhorn U, Laine GA, Allen SJ (1995) Myocardial edema, left ventricular function, and pulmonary hypertension. J Appl Physiol 78:132–137

    Article  PubMed  CAS  Google Scholar 

  27. Pratt JW, Schertel ER, Schaefer SL et al (1996) Acute transient coronary sinus hypertension impairs left ventricular function and induces myocardial edema. Am J Physiol 271:H834–H841

    PubMed  CAS  Google Scholar 

  28. Sorota S (1992) Swelling-induced chloride-sensitive current in canine atrial cells revealed by whole-cell patch-clamp method. Circ Res 70:679–687

    PubMed  CAS  Google Scholar 

  29. Rubboli A, Sobotka PA, Euler DE (1994) Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart. Am J Physiol 267:H1054–H1061

    PubMed  CAS  Google Scholar 

  30. Bouchard A, Reeves RC, Cranney G, Bishop SP, Pohost GM (1989) Assessment of myocardial infarct size by means of T2-weighted 1H nuclear magnetic imaging. Am Heart J 117:281–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Katsuhiko Yamada and Takanobu Watanabe for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoyasu Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Isobe, S., Suzuki, S. et al. Diagnostic usefulness of the oedema-infarct ratio to differentiate acute from chronic myocardial damage using magnetic resonance imaging. Eur Radiol 22, 789–795 (2012). https://doi.org/10.1007/s00330-011-2327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2327-8

Key words

Navigation