Skip to main content
Log in

Prospective evaluation of 68Ga-DOTA-NOC PET-CT in phaeochromocytoma and paraganglioma: preliminary results from a single centre study

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the role of 68Ga-labelled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI3-Octreotide (68Ga-DOTA-NOC) whole body positron emission tomography-computed tomography (PET-CT) as a functional imaging approach for phaeochromocytoma and paraganglioma.

Methods

Thirty-five unrelated patients (Median age-34.4 years; range: 15–71) were evaluated in this prospective study. PET-CT was performed after injection of 132–222 MBq of 68Ga-DOTA-NOC. Images were evaluated by two experienced nuclear medicine physicians both qualitatively as well as quantitatively (standardised uptake value-SUVmax). In addition we compared the findings with 131I Metaiodobenzylguanidine (MIBG) scintigraphy, which was available for 25 patients. Histopathology and/or conventional imaging with biochemical markers were taken as the reference standard.

Results

44 lesions were detected on 68Ga-DOTA-NOC PET-CT imaging with an additional detection of 12 lesions not previously known, leading to a change in management of 6 patients. Sensitivity, specificity and accuracy were 100%, 85.7%, and 97.1% on a per patient basis and 100%, 85.7% and 98% on per lesion basis, respectively.131I MIBG scintigraphy was concordant with 68Ga-DOTA-NOC PET-CT in 16 patients and false negative in 9 patients.

Conclusion

68Ga-DOTA-NOC PET-CT is highly sensitive and specific for the detection of phaeochromoctyomas and paragangliomas. It seems better than 131I MIBG scintigraphy for this purpose.

Key Points

68 Ga-DOTA-NOC PET-CT seems useful in patients with phaeochromocytoma and paraganglioma.

This prospective single centre study showed that it has high diagnostic accuracy.

68 Ga-DOTA-NOC PET-CT seems superior to 131 I-MIBG in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gifford RW Jr, Manger WM, Bravo EL (1994) Pheochromocytoma. Endocrinol Metab Clin North Am 23:387–404

    PubMed  Google Scholar 

  2. Werbel SS, Ober KP (1995) Pheochromocytoma: update on diagnosis, localization, and management. Med Clin North Am 79:131–153

    PubMed  CAS  Google Scholar 

  3. Manger WM, Gifford RW (1995) Pheochromocytoma: a clinical overview. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management. Raven, New York, pp 225–244

    Google Scholar 

  4. Neumann HPH, Berger DP, Sigmund G et al (1993) Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel- Lindau disease. N Engl J Med 329:1531–1538

    Article  PubMed  CAS  Google Scholar 

  5. Moreira SG Jr, Pow-Sang JM (2002) Evaluation and management of adrenal masses. Cancer Control 9:326–334

    PubMed  Google Scholar 

  6. Bravo EL (1994) Evolving concepts in the pathophysiology, diagnosis and treatment of pheochromocytoma. Endocr Rev 15:356–368

    PubMed  CAS  Google Scholar 

  7. CapellaC RivaC, Cornaggia M et al (1988) Histopathology, cytology and cytochemistry of pheochromocytomas and paragangliomas including chemodectomas. Path Res Pract 183:176–187

    Article  Google Scholar 

  8. Grufferman S, Gillman MW, Pasternak LR et al (1980) Familial carotid body tumors: case report and epidemiologic review. Cancer 46:2116–2122

    Article  PubMed  CAS  Google Scholar 

  9. Kliewer KE, Wen DR, Cancilla PA et al (1989) Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol 20:29–39

    Article  PubMed  CAS  Google Scholar 

  10. Lack EE, Cubilla AL, Woodruff JM (1979) Paragangliomas of the head and neck region. A pathologic study of tumors from 71 patients. Hum Pathol 10:191–218

    Article  PubMed  CAS  Google Scholar 

  11. Kudva YC, Sawka AM, Young WF Jr (2003) Clinical review 164: the laboratory diagnosis of adrenal pheochromocytoma—the Mayo Clinic experience. J Clin Endocrinol Metab 88:4533–4539

    Article  PubMed  CAS  Google Scholar 

  12. Neumann HPH, Bender BU, Reincke M et al (1999) Adrenal sparing surgery for pheochromocytoma. Br J Surg 84:94–97

    Article  Google Scholar 

  13. Quint LE, Glazer GM, Francis IR et al (1987) Pheochromocytoma and paraganglioma: comparison of MRI imaging with CT and 131I MIBG scintigraphy. Radiology 165:89–93

    PubMed  CAS  Google Scholar 

  14. Connor CS, Hermreck AS, Thomas JH (1988) Pitfalls in the diagnosis of pheochromocytoma. Am Surg 54:634–636

    PubMed  CAS  Google Scholar 

  15. Khafagi FA, Shapiro B, Fig LM et al (1989) Labetalol reduces 131I MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med 30:481–489

    PubMed  CAS  Google Scholar 

  16. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  PubMed  CAS  Google Scholar 

  17. Jochen M, Nicole U, Stefan S et al (2003) Somatostatin Receptor Subtypes in Human Pheochromocytoma: Subcellular Expression Pattern and Functional Relevance for Octreotide Scintigraphy. J Clin Endocrinol Metab 88:5150–5157

    Article  Google Scholar 

  18. Van der Harst E, De Herder WW, Bruining HA et al (2000) 123[I] Metaiodobenzylguanidine and 111[In] octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab 86:685–693

    Article  Google Scholar 

  19. Zhernosekov KP, Filosofov DV, Baum RP et al (2007) Processing of Generator-Produced 68Ga for Medical Application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

  20. Eriksson B, Orlefors H, Oberg K et al (2005) Developments in PET for the detection of endocrine tumours. Best Pract Res Clin Endocrinol Metab 19:311–324

    Article  PubMed  CAS  Google Scholar 

  21. Taïeb D, Sebag F, Barlier A et al (2009) 18F-FDG Avidity of Pheochromocytomas and Paragangliomas: A New Molecular Imaging Signature? J Nucl Med 50:711–717

    Article  PubMed  CAS  Google Scholar 

  22. Shuklin BL, Thompson NW, Shapiro B et al (1999) Pheochromocytomas: Imaging with 2-[Fluorine-18] fluoro-2-deoxy-D-glucose PET. Radiology 212:35–41

    Google Scholar 

  23. Trampal C, Engler H, Juhlin C et al (2004) Pheochromocytomas: Detection with 11C Hydroxyephedrine PET. Radiology 230:423–428

    Article  PubMed  Google Scholar 

  24. Hoegerle S, Nitzsche E, Altehoefer C et al (2002) Pheochromocytomas: Detection with 18F DOPA Whole-Body PET—Initial Results. Radiology 222:507–512

    Article  PubMed  Google Scholar 

  25. Ambrosini V, Campana D, Bodei L et al (2010) 68Ga-DOTA-NOC PET/CT Clinical Impact in Patients with Neuroendocrine Tumors. J Nucl Med 51:669–673

    Article  PubMed  Google Scholar 

  26. Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-Labeled Peptides in Tumor Imaging. J Nucl Med 46:172S–178S

    PubMed  CAS  Google Scholar 

  27. Win Z, Al-Nahhas A, Towey D et al (2007) 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun 28:359–363

    Article  PubMed  Google Scholar 

  28. Mantero F, Massimo T, Arnoldi G et al (2000) A survey on adrenal incidentaloma in Italy. J Clin Endocrinol Metab 85:637–644

    Article  PubMed  CAS  Google Scholar 

  29. Ueberberg B, Tourne H, Redman A et al (2005) Differential expression of the human somatostatin receptor subtypes sst1 to sst5 in various adrenal tumors and normal adrenal gland. Horm Metab Res 37:722–728

    Article  PubMed  CAS  Google Scholar 

  30. van der Harst HE, de Herder WW, Bruining HA et al (2001) (123)I metaiodobenzylguanidine and (111)In octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab 86:685–693

    Article  PubMed  Google Scholar 

  31. Kaltsas G, Korbonits M, Heintz E et al (2001) Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab 86:895–902

    Article  PubMed  CAS  Google Scholar 

  32. Kölby L, Bernhardt P, Johanson V et al (2006) Can quantification of VMAT and SSTR expression be helpful for planning radionuclide therapy of malignant pheochromocytomas? Ann N Y Acad Sci 1073:491–497

    Article  PubMed  Google Scholar 

  33. Timmers H, Gimenez-Roqueplo AP, Mannelli M, Pacak K (2009) Clinical aspects of SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 16:391–400

    Article  PubMed  CAS  Google Scholar 

  34. Burnichon N, Rohmer V, Amar L et al (2009) The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 94:2817–2827

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Bal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naswa, N., Sharma, P., Nazar, A.H. et al. Prospective evaluation of 68Ga-DOTA-NOC PET-CT in phaeochromocytoma and paraganglioma: preliminary results from a single centre study. Eur Radiol 22, 710–719 (2012). https://doi.org/10.1007/s00330-011-2289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2289-x

Keywords

Navigation