Skip to main content
Log in

Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess the relationship of morphologically defined lumbar disc abnormalities with quantitative T2 mapping.

Methods

Fifty-three patients, mean age 39 years, with low back pain were examined by MRI at 3 T (sagittal T1-fast spin echo (FSE), three-plane T2-FSE for morphological MRI, multi-echo spin echo for T2 mapping). All discs were classified morphologically. Regions of interest (ROIs) for the annulus were drawn. The space in between was defined as the nucleus pulposus (NP). To evaluate differences between the classified groups, univariate ANOVA with post hoc Games–Howell and paired two-tailed t tests were used.

Results

In 265 discs we found 39 focal herniations, 10 annular tears, 123 bulging discs and 103 “normal discs”. T2 values of the NP between discs with annular tear and all other groups were statistically significantly different (all p ≤ 0.01). Discs with annular tears showed markedly lower NP T2 values than discs without. The difference in NP T2 values between discs with focal herniation and normal discs (p = 0.005) was statistically significant. There was no difference in NP T2 values between bulging and herniated discs (p = 0.11)

Conclusion

Quantitative T2 mapping of the nucleus pulposus of the intervertebral disc in the lumbar spine at 3 T reveals significant differences in discs with herniation and annular tears compared with discs without these abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Center for Health Statistics (1973) Limitation of activity due to chronic conditions, United States, 1969 and 1970. Series 10 (Number 80)

  2. Waris W (1948) Lumbar disc herniation, clinical studies and late results of 374 cases of sciatica. Acta Chir Scand (Suppl) (140)

  3. Kelsey JL, Ostfeld AM (1975) Demographic characteristics of persons with acute herniated lumbar intervertebral disc. J Chron Dis 28:37–50

    Article  CAS  PubMed  Google Scholar 

  4. White AA 3rd, Panjabi MM (1978) The clinical biomechanics of the occipitoatlantoaxial complex. Orthop Clin N Am 9:867–878

    Google Scholar 

  5. Modic MT, Ross JS (2007) Lumbar degenerative disk disease. Radiology 245:43–61

    Article  PubMed  Google Scholar 

  6. Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C (2006) The value of T2 relaxation times to characterize lumbar intervertebral disks: preliminary results. AJNR Am J Neuroradiol 27:337–342

    CAS  PubMed  Google Scholar 

  7. Tertti M, Paajanen H, Laato M, Aho H, Komu M, Kormano M (1991) Disc degeneration in magnetic resonance imaging. A comparative biochemical, histologic, and radiologic study in cadaver spines. Spine (Phila Pa 1976) 16:629–634

    CAS  Google Scholar 

  8. Antoniou J, Pike GB, Steffen T, Baramki H, Poole AR, Aebi M, Alini M (1998) Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med 40:900–907

    Article  CAS  PubMed  Google Scholar 

  9. Mlynarik V, Degrassi A, Toffanin R, Vittur F, Cova M, Pozzi-Mucelli RS (1996) Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy. Magn Reson Imaging 14:435–442

    Article  CAS  PubMed  Google Scholar 

  10. Kim DJ, Suh JS, Jeong EK, Shin KH, Yang WI (1999) Correlation of laminated MR appearance of articular cartilage with histology, ascertained by artificial landmarks on the cartilage. J Magn Reson Imaging 10:57–64

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe A, Benneker LM, Boesch C, Watanabe T, Obata T, Anderson SE (2007) Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol 189:936–942

    Article  PubMed  Google Scholar 

  12. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878

    CAS  Google Scholar 

  13. Feng H, Danfelter M, Stromqvist B, Heinegard D (2006) Extracellular matrix in disc degeneration. J Bone Joint Surg Am 88(Suppl 2):25–29

    Article  PubMed  Google Scholar 

  14. Schroeder Y, Sivan S, Wilson W, Merkher Y, Huyghe JM, Maroudas A, Baaijens FP (2007) Are disc pressure, stress, and osmolarity affected by intra- and extrafibrillar fluid exchange? J Orthop Res 25:1317–1324

    Article  PubMed  Google Scholar 

  15. Roberts S, Menage J, Urban JP (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976) 14:166–174

    CAS  Google Scholar 

  16. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  CAS  PubMed  Google Scholar 

  17. Ludescher B, Effelsberg J, Martirosian P, Steidle G, Markert B, Claussen C, Schick F (2008) T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging 28:252–257

    Article  PubMed  Google Scholar 

  18. Eyre DR, Muir H (1974) Collagen polymorphism: two molecular species in pig intervertebral disc. FEBS Lett 42:192–196

    Article  CAS  PubMed  Google Scholar 

  19. Eyre DR, Muir H (1977) Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta 492:29–42

    CAS  PubMed  Google Scholar 

  20. Urban JP, McMullin JF (1985) Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents. Biorheology 22:145–157

    CAS  PubMed  Google Scholar 

  21. Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673:443–453

    CAS  PubMed  Google Scholar 

  22. Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14

    Article  PubMed  Google Scholar 

  23. Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine (Phila Pa 1976) 21:2149–2155

    CAS  Google Scholar 

  24. Bydder GM (2002) New approaches to magnetic resonance imaging of intervertebral discs, tendons, ligaments, and menisci. Spine (Phila Pa 1976) 27:1264–1268

    Google Scholar 

  25. Yu S, Haughton VM, Sether LA, Ho KC, Wagner M (1989) Criteria for classifying normal and degenerated lumbar intervertebral disks. Radiology 170:523–526

    CAS  PubMed  Google Scholar 

  26. Friberg S, Hirsch C (1949) Anatomical and clinical studies on lumbar disc degeneration. Acta Orthop Scand 19:222–242, illust

    Article  CAS  PubMed  Google Scholar 

  27. Aprill C, Bogduk N (1992) High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol 65:361–369

    Article  CAS  PubMed  Google Scholar 

  28. Schellhas KP, Pollei SR, Gundry CR, Heithoff KB (1996) Lumbar disc high-intensity zone. Correlation of magnetic resonance imaging and discography. Spine (Phila Pa 1976) 21:79–86

    CAS  Google Scholar 

  29. Saifuddin A, Mitchell R, Taylor BA (1999) Extradural inflammation associated with annular tears: demonstration with gadolinium-enhanced lumbar spine MRI. Eur Spine J 8:34–39

    Article  CAS  PubMed  Google Scholar 

  30. Lam KS, Carlin D, Mulholland RC (2000) Lumbar disc high-intensity zone: the value and significance of provocative discography in the determination of the discogenic pain source. Eur Spine J 9:36–41

    Article  CAS  PubMed  Google Scholar 

  31. Peng B, Hou S, Wu W, Zhang C, Yang Y (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J 15:583–587

    Article  PubMed  Google Scholar 

  32. Ricketson R, Simmons JW, Hauser BO (1996) The prolapsed intervertebral disc. The high-intensity zone with discography correlation. Spine (Phila Pa 1976) 21:2758–2762

    CAS  Google Scholar 

  33. Smith BM, Hurwitz EL, Solsberg D, Rubinstein D, Corenman DS, Dwyer AP, Kleiner J (1998) Interobserver reliability of detecting lumbar intervertebral disc high-intensity zone on magnetic resonance imaging and association of high-intensity zone with pain and anular disruption. Spine (Phila Pa 1976) 23:2074–2080

    CAS  Google Scholar 

  34. Rankine JJ, Gill KP, Hutchinson CE, Ross ER, Williamson JB (1999) The clinical significance of the high-intensity zone on lumbar spine magnetic resonance imaging. Spine (Phila Pa 1976) 24:1913–1919, discussion 1920

    CAS  Google Scholar 

  35. Doita M, Kanatani T, Harada T, Mizuno K (1996) Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine (Phila Pa 1976) 21:235–241

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Trattnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trattnig, S., Stelzeneder, D., Goed, S. et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. Eur Radiol 20, 2715–2722 (2010). https://doi.org/10.1007/s00330-010-1843-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1843-2

Keywords

Navigation