Skip to main content
Log in

Whole-body magnetic resonance angiography at 3.0 Tesla

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The quality of magnetic resonance (MR) angiography could be substantially improved over the past several years based on the introduction and application of parallel imaging, new sequence techniques, such as, e.g., centric k-space trajectories, dedicated contrast agents, and clinical high-field scanners. All of these techniques have played an important role to improve image resolution or decrease acquisition time for the dedicated examination of a single vascular territory. However, whole-body MR angiography may be the application with the potential to profit most from these technical advances. The present review article describes the technical innovations with a focus on parallel imaging at high field strength and the impact on whole-body MR angiography. The clinical value of advanced whole-body MR angiography techniques is illustrated by characteristic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nael K, Ruehm SG, Michaely HJ et al (2006) High spatial-resolution CE-MRA of the carotid circulation with parallel imaging: comparison of image quality between two different acceleration factors at 3.0 Tesla. Invest Radiol 41:391–399

    Article  PubMed  Google Scholar 

  2. Anzalone N, Scomazzoni F, Castellano R et al (2005) Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Radiology 236:204–213

    Article  PubMed  Google Scholar 

  3. Riedy G, Golay X, Melhem ER (2005) Three-dimensional isotropic contrast-enhanced MR angiography of the carotid artery using sensitivity-encoding and random elliptic centric k-space filling: technique optimization. Neuroradiology 47:668–673

    Article  CAS  PubMed  Google Scholar 

  4. Nederkoorn PJ, Elgersma OEH, van der Graaf Y, Eikelboom BC, Kappelle LJ, Mali WPTM (2003) Carotid artery atenosis: accuracy of contrast-enhanced MR angiography for diagnosis. Radiology 228:677–682

    Article  PubMed  Google Scholar 

  5. Kroencke TJ, Wasser MN, Pattynama PMT et al (2002) Gadobenate Dimeglumine-enhanced MR angiography of the abdominal aorta and renal arteries. Am J Roentgenol 179:1573–1582

    Google Scholar 

  6. Billaud Y, Beuf O, Desjeux G, Valette PJ, Pilleul F (2005) 3D contrast-enhanced MR angiography of the abdominal aorta and its distal branches: interobserver agreement of radiologists in a routine examination. Acad Radiol 12:155–163

    Article  PubMed  Google Scholar 

  7. Prince MR, Narasimham DL, Stanley JC et al (1995) Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197:785–792

    CAS  PubMed  Google Scholar 

  8. Rofsky NM, Johnson G, Adelman MA, Rosen RJ, Krinsky GA, Weinreb JC (1997) Peripheral vascular disease evaluated with reduced-dose gadolinium-enhanced MR angiography. Radiology 205:163–169

    CAS  PubMed  Google Scholar 

  9. Owen RS, Baum RA, Carpenter JP, Holland GA, Cope C (1993) Symptomatic peripheral vascular disease: selection of imaging parameters and clinical evaluation with MR angiography. Radiology 187:627–635

    CAS  PubMed  Google Scholar 

  10. Nelemans PJ, Leiner T, de Vet HCW, van Engelshoven JMA (2000) Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology 217:105–114

    CAS  PubMed  Google Scholar 

  11. Maki JH, Wilson GJ, Eubank WB, Hoogeveen R (2002) Utilizing SENSE to achieve lower station sub-millimeter isotropic resolution and minimal venous enhancement in peripheral MR angiography. J Magn Reson Imaging 15:484–491

    Article  PubMed  Google Scholar 

  12. Goyen M, Quick HH, Debatin JF et al (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224:270–277

    Article  PubMed  Google Scholar 

  13. Ruehm SG, Goyen M, Barkhausen J et al (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357:1086–1091

    Article  CAS  PubMed  Google Scholar 

  14. Kramer H, Schoenberg SO, Nikolaou K et al (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236:300–310

    Article  PubMed  Google Scholar 

  15. Fenchel M, Scheule AM, Stauder NI et al (2006) Atherosclerotic disease: whole-body cardiovascular imaging with MR system with 32 receiver channels and total-body surface coil technology-initial clinical results. Radiology 238:280–291

    Article  PubMed  Google Scholar 

  16. Kruger DG, Riederer SJ, Grimm RC, Rossman PJ (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47:224–231

    Article  PubMed  Google Scholar 

  17. Quick HH, Vogt FM, Madewald S et al (2004) High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience. Fortschr Röntgenstr 176:163–169

    Article  CAS  Google Scholar 

  18. Fenchel M, Requardt M, Tomaschko K et al (2005) Whole-body MR angiography using a novel 32-receiving-channel MR system with surface coil technology: first clinical experience. J Magn Reson Imaging 21:596–603

    Article  PubMed  Google Scholar 

  19. Vogt FM, Ajaj W, Hunold P et al (2004) Venous compression at high-spatial-resolution three-dimensional MR angiography of peripheral arteries. Radiology 233:913–920

    Article  PubMed  Google Scholar 

  20. Bilecen D, Schulte AC, Aschwanden M et al (2004) MR angiography with venous compression. Radiology 233:617–618

    Article  PubMed  Google Scholar 

  21. Nael K, Michaely HJ, Villablanca P, Salamon N, Laub G, Finn JP (2006) Time-resolved contrast enhanced magnetic resonance angiography of the head and neck at 3.0 Tesla: initial results. Invest Radiol 41:116–124

    Article  PubMed  Google Scholar 

  22. Nael K, Villablanca JP, Pope WB, McNamara TO, Laub G, Finn JP (2007) Supraaortic arteries: contrast-enhanced MR angiography at 3.0 T-highly accelerated parallel acquisition for improved spatial resolution over an extended field of view. Radiology 242:600–609

    Article  PubMed  Google Scholar 

  23. Fenchel M, Nael K, Ruehm S, Finn JP, Miller S, Laub G (2006) Isotropic high spatial resolution magnetic resonance angiography of the supra-aortic arteries using two-dimensional parallel imaging (iPAT2) at 3 Tesla: a feasibility study. Invest Radiol 41:545–552

    Article  PubMed  Google Scholar 

  24. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol 188:586–592

    Article  PubMed  Google Scholar 

  25. Steg PG, Bhatt DL, Wilson PW et al (2006) One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA 297:1197–1206

    Article  Google Scholar 

  26. Bhatt DL, Steg PG, Ohman EM et al (2006) International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295:180–189

    Article  CAS  PubMed  Google Scholar 

  27. Smith TP, Cragg AH, Berbaum KS, Nakagawa N (1992) Comparison of the efficacy of digital subtraction and film-screen angiography of the lower limb: prosepctive study in 50 patients. Am J Roentgenol 158:431–436

    CAS  Google Scholar 

  28. Malden ES, Picus D, Vesely TM, Darcy MD, Hicks ME (1994) Peripheral vascular disease: evaluation with stepping DSA and conventional screen-film angiography. Radiology 191:149–153

    CAS  PubMed  Google Scholar 

  29. von Kemp K, van den Brande P, Peterson T et al (1997) Screening for concomitant diseases in peripheral vascular patients. Results of a systematic approach. Int Angiol 16:114–122

    Google Scholar 

  30. Cheng SWK, Wu LLH, Lau H, Wong J (1999) Screening for asymptomatic carotid stenosis in patients with peripheral vascular disease: a prospective study and risk factor analysis. Cardiovasc Surg 7:303–309

    Article  CAS  PubMed  Google Scholar 

  31. Goyen M, Goehde SC, Herborn CU et al (2004) MR-based full-body preventative cardiovascular and tumor imaging: technique and preliminary experience. Eur Radiol 14:783–791

    Article  PubMed  Google Scholar 

  32. Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206

    Article  CAS  PubMed  Google Scholar 

  33. Hoogeveen RM, Bakker CJ, Viergever MA (1998) Limits to the accuracy of vessel diameter measurement in MR angiography. J Magn Reson Imaging 8:1228–1235

    Article  CAS  PubMed  Google Scholar 

  34. Westenberg JJ, van der Geest RJ, Wasser MN et al (2000) Vessel diameter measurements in gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries. Magn Reson Imaging 18:13–22

    Article  CAS  PubMed  Google Scholar 

  35. Vasbinder GB, Maki JH, Nijenhuis RJ et al (2002) Motion of the distal renal artery during three-dimensional contrast-enhanced breath-hold MRA. J Magn Reson Imaging 16:685–696

    Article  PubMed  Google Scholar 

  36. Born M, Willinek WA, Gieseke J, von Falkenhausen M, Schild H, Kuhl CK (2005) Sensitivity encoding (SENSE) for contrast-enhanced 3D MR angiography of the abdominal arteries. J Magn Reson Imaging 22:559–565

    Article  PubMed  Google Scholar 

  37. Hayes CE, Hattes N, Roemer PB (1991) Volume imaging with MR phased arrays. Magn Reson Med 18:309–319

    Article  CAS  PubMed  Google Scholar 

  38. Hayes CE, Roemer PB (1990) Noise correlations in data simultaneously acquired from multiple surface coil arrays. Magn Reson Med 16:181–191

    Article  CAS  PubMed  Google Scholar 

  39. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  CAS  PubMed  Google Scholar 

  40. Pruessmann KP, Weiger M, Scheidegger MB, Bydder M (1999) SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  41. Wen H, Denison TJ, Singerman RW, Balaban RS (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71

    Article  CAS  PubMed  Google Scholar 

  42. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  43. Bammer R, Schoenberg SO (2004) Current concepts and advances in clinical parallel magnetic resonance imaging. Top Magn Reson Imaging 15:129–158

    Article  PubMed  Google Scholar 

  44. Ohliger MA, Grant AK, Sodickson DK (2003) Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 50:1018–1030

    Article  PubMed  Google Scholar 

  45. Wiesinger F, Boesiger P, Pruessmann KP (2004) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52:376–390

    Article  PubMed  Google Scholar 

  46. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Article  PubMed  Google Scholar 

  47. Schmitt F, Grosu D, Mohr C et al (2004) 3 Tesla MRI: successful results with higher field strengths. Radiologe 44:31–47

    Article  CAS  PubMed  Google Scholar 

  48. Reimer P, Müller M, Marx C et al (1998) T1 effects of a bolus-injectable superparamagnetic iron oxide, SH U 555 A: dependence on field strength and plasma concentration-preliminary clinical experience with dynamic T1weighted MR imaging. Radiology 209:831–836

    CAS  PubMed  Google Scholar 

  49. Bernstein MA, Huston J III, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3.0 T: technical considerations and initial experience. Magn Reson Med 46:955–962

    Article  CAS  PubMed  Google Scholar 

  50. Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI (2006) B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med 55:858–864

    Article  PubMed  Google Scholar 

  51. Nael K, Saleh R, Nyborg GK et al (2007) Pulmonary MR perfusion at 3.0 Tesla using a blood pool contrast agent: Initial results in a swine model. J Magn Reson Imaging 25:66–72

    Article  PubMed  Google Scholar 

  52. Pintaske J, Martirosian P, Graf H et al (2006) Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41:213–221

    Article  PubMed  Google Scholar 

  53. Runge VM, Biswas J, Wintersperger BJ et al (2006) The efficacy of gadobenate dimeglumine (Gd-BOPTA) at 3 Tesla in brain magnetic resonance imaging: comparison to 1.5 Tesla and a standard gadolinium chelate using a rat brain tumor model. Invest Radiol 41:244–248

    Article  CAS  PubMed  Google Scholar 

  54. Kim JK, Farb RI, Wright GA (1998) Test bolus examination in the carotid artery at dynamic gadolinium-enhanced MR angiography. Radiology 206:283–289

    CAS  PubMed  Google Scholar 

  55. Heverhagen JT, Funck RC, Schwarz U et al (2001) Kinetic evaluation of an i.v. bolus of MR contrast media. Magn Reson Imaging 19:1025–1030

    Article  CAS  PubMed  Google Scholar 

  56. Morasch MD, Collins J, Pereles FS et al (2003) Lower extremity stepping-table magnetic resonance angiography with multilevel contrast timing and segmented contrast infusion. J Vasc Surg 37:62–71

    Article  PubMed  Google Scholar 

  57. Nael K, Ruehm SG, Michaely HJ et al (2007) Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. AJR Am J Roentgenol 188:529–539

    Article  PubMed  Google Scholar 

  58. Nael K, Fenchel M, Krishnam M, Laub G, Finn JP, Ruehm SG (2007) High-spatial-resolution whole-body MR angiography with high-acceleration parallel acquisition and 32-channel 3.0-T unit: initial experience. Radiology 242:865–872

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fenchel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenchel, M., Nael, K., Seeger, A. et al. Whole-body magnetic resonance angiography at 3.0 Tesla. Eur Radiol 18, 1473–1483 (2008). https://doi.org/10.1007/s00330-008-0885-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0885-1

Keywords

Navigation