Skip to main content
Log in

High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract.

The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27–46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25°) were obtained with a reconstructed voxel size of 0.6×0.7×0.8 mm3. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in visualizing the enhancement of small structures in the temporal bone; however, enhancement of the cochlear fluid space could not be visualized even with 3D rIR, triple-dose contrast, and dedicated coils at 1.5 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5. a
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Tanioka H, Shirakawa T, Machida T, Sasaki Y (1991) Three-dimensional reconstructed MR imaging of the inner ear. Radiology 178:141–144

    CAS  PubMed  Google Scholar 

  2. Stillman AE, Remley K, Loes DJ, Hu X, Latchaw RE (1994) Steady-state free precession imaging of the inner ear. Am J Neuroradiol 15:348–350

    CAS  PubMed  Google Scholar 

  3. Casselman JW, Kuhweide R, Deimling M, Ampe W, Dehaene I, Meeus L (1993) Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. Am J Neuroradiol 14:47–57

    PubMed  Google Scholar 

  4. Somers T, Casselman J, de Ceulaer G, Govaerts P, Offeciers E (2001) Prognostic value of magnetic resonance imaging findings in hearing preservation surgery for vestibular schwannoma. Otol Neurotol 22:87–94

    CAS  PubMed  Google Scholar 

  5. Vu AT (2001) High-resolution inner ear imaging using 3D asymmetric fully-balanced steady state coherent imaging pulse sequence. Proc International Society of Magnetic Resonance in Medicine 2001:1631

    Google Scholar 

  6. Naganawa S, Yamakawa K, Fukatsu H, Ishigaki T, Nakashima T, Sugimoto H et al. (1996) High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence. Eur Radiol 6:369–374

    PubMed  Google Scholar 

  7. Naganawa S, Ito T, Fukatsu H, Ishigaki T, Nakashima T, Ichinose N et al. (1998) MR imaging of the inner ear: comparison of a three-dimensional fast spin-echo sequence with use of a dedicated quadrature-surface coil with a gadolinium-enhanced spoiled gradient-recalled sequence. Radiology 208:679–685

    CAS  PubMed  Google Scholar 

  8. Naganawa S, Itoh T, Fukatsu H, Ishigaki T, Nakashima T, Kassai Y et al. (1998) Three-dimensional fast spin-echo MR of the inner ear: ultra-long echo train length and half-Fourier technique. Am J Neuroradiol 19:739–741

    Google Scholar 

  9. Niyazov DM, Andrews JC, Strelioff D, Sinha S, Lufkin R (2001) Diagnosis of endolymphatic hydrops in-vivo with magnetic resonance imaging. Otol Neurotol 22:813–817

    CAS  PubMed  Google Scholar 

  10. Finelli DA, Hurst GC, Gullapali RP, Bellon EM (1994) Improved contrast of enhancing brain lesions on postgadolinium, T1-weighted spin-echo images with use of magnetization transfer. Radiology 190:553–559

    CAS  PubMed  Google Scholar 

  11. Thurnher SA, Capelastegui A, Del Olmo FH, Dondelinger RF, Gervas C, Jassoy AG et al. (2001) Safety and effectiveness of single-versus triple-dose gadodiamide injection-enhanced MR angiography of the abdomen: a phase III double-blind multicenter study. Radiology 219:137–146

    CAS  PubMed  Google Scholar 

  12. Bandai H, Tsunoda A, Mitsuoka H, Arai H, Sato K, Makita J (2002) Fast inversion recovery magnetic resonance imaging with the real reconstruction method: a diagnostic tool for cerebral gliomas. Neurol Med Chir (Tokyo) 42:5–10

    Google Scholar 

  13. Du YP, Parker DL, Davis WL, Cao G (1994) Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography. J Magn Reson Imaging 4:733–741

    CAS  PubMed  Google Scholar 

  14. Rubinstein D, Burton BS, Walker AL (1995) The anatomy of the inferior petrosal sinus, glossopharyngeal nerve, vagus nerve, and accessory nerve in the jugular foramen. Am J Neuroradiol 16:185–194

    CAS  PubMed  Google Scholar 

  15. Axelsson A (1988) Comparative anatomy of cochlear blood vessels. Am J Otolaryngol 9:278–290

    CAS  PubMed  Google Scholar 

  16. Watanabe Y, Nakashima T, Yanagita N (1988) Venous communications of the cochlea after acute occlusion of the vein of the cochlear aqueduct. Arch Otorhinolaryngol 245:340–343

    CAS  PubMed  Google Scholar 

  17. Watanabe Y, Nakashima T, Yanagita N (1990) The influence of acute venous congestion on the guinea pig cochlea. Eur Arch Otorhinolaryngol 247:161–164

    CAS  PubMed  Google Scholar 

  18. Daly CA, Donnelly MJ (1996) The enlarged cochlear aqueduct: a radiological flying saucer? Clin Radiol 51:821

    Google Scholar 

  19. Mukherji SK, Baggett HC, Alley J, Carrasco VH (1998) Enlarged cochlear aqueduct. Am J Neuroradiol 19:330–332

    CAS  PubMed  Google Scholar 

  20. Kinoshita T, Ishii K, Okitsu T, Okudera T, Ogawa T (2001) Facial nerve palsy: evaluation by contrast-enhanced MR imaging. Clin Radiol 56:926–932

    Article  CAS  PubMed  Google Scholar 

  21. Saatci I, Sahinturk F, Sennaroglu L, Boyvat F, Gursel B, Besim A (1996) MRI of the facial nerve in idiopathic facial palsy. Eur Radiol 6:631–636

    CAS  PubMed  Google Scholar 

  22. Fitzgerald DC, Mark AS (1996) Endolymphatic duct/sac enhancement on gadolinium magnetic resonance imaging of the inner ear: preliminary observations and case reports. Am J Otol 17:603–606

    CAS  PubMed  Google Scholar 

  23. Kim H, Park S, Cho Y, Lim M (2000) Normal enhancement patterns of the endolymphatic sac on MR imaging. Radiology 217:601

    Google Scholar 

  24. Naganawa S, Koshikawa T, Fukatsu H, Ishigaki T, Nakashima T, Ichinose N (2002) Contrast-enhanced MR imaging of the endolymphatic sac in patients with sudden hearing loss. Eur Radiol 12:1121–1126

    PubMed  Google Scholar 

  25. Friberg U, Rask-Andersen H (2002) Vascular occlusion in the endolymphatic sac in Meniere's disease. Ann Otol Rhinol Laryngol 111:237–245

    PubMed  Google Scholar 

  26. Gussen R (1980) Endolymphatic hydrops with absence of vein in paravestibular canaliculus. Ann Otol Rhinol Laryngol 89:157–161

    CAS  PubMed  Google Scholar 

  27. Hosseinzadeh M, Hilinski JM, Turner WJ, Harris JP (1998) Meniere disease caused by an anomalous vein of the vestibular aqueduct. Arch Otolaryngol Head Neck Surg 124:695–698

    CAS  PubMed  Google Scholar 

  28. Mazzoni A (1979) Vein of the vestibular aqueduct. Ann Otol Rhinol Laryngol 88:759–767

    CAS  PubMed  Google Scholar 

  29. Tekdemir I, Aslan A, Elhan A (1999) The subarcuate canaliculus and its artery: a radioanatomical study. Anat Anz 181:207–211

    CAS  PubMed  Google Scholar 

  30. Ito T, Naganawa S, Fukatsu H, Ishiguchi T, Ishigaki T, Kobayashi M et al. (1999) High-resolution MR images of inner ear internal anatomy using a local gradient coil at 1.5 Tesla: correlation with histological specimen. Radiat Med 17:343–347

    CAS  PubMed  Google Scholar 

  31. Naganawa S, Koshikawa T, Fukatsu H, Ishigaki T, Aoki I, Ninomiya A (2002) Fast recovery 3D fast spin-echo MR imaging of the inner ear at 3 T. Am J Neuroradiol 23:299–302

    PubMed  Google Scholar 

  32. Bakker CJ, Bhagwandien R, Moerland MA, Ramos LM (1994) Simulation of susceptibility artifacts in 2D and 3D Fourier transform spin-echo and gradient-echo magnetic resonance imaging. Magn Reson Imaging 12:767–774

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Naganawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naganawa, S., Koshikawa, T., Nakamura, T. et al. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material. Eur Radiol 13, 2650–2658 (2003). https://doi.org/10.1007/s00330-003-1922-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-1922-8

Keywords

Navigation