Skip to main content

Advertisement

Log in

Distribution of radiolarians and tintinnid ciliates in Upper Holocene sediments of Laptev and East Siberian seas

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Interest in the study of microplanktonic organisms in the Arctic has increased owing to their direct participation in the process of sedimentation and sensitive response to changes in environmental and climatic factors. This study presents new data on the taxonomic diversity and content of radiolarian skeletons and agglutinated tintinnid ciliate loricae in the Upper Holocene sediments of the Laptev Sea, East Siberian Sea, and the adjacent part of the Arctic Ocean. We traced the spatial distribution of representative microfauna of these groups in surface sediments and sediment cores. Radiolarian skeletons were found in the surface sediments of the continental slope of the Laptev Sea and adjacent parts of the Arctic Ocean. These belong to the following six species: Stylatractus (?) sp., Actinomma leptoderma leptoderma, Actinomma leptoderma longispina, Streblacantha circumtexta, Spongotrochus glacialis, and Cycladophora davisiana. The radiolarian fauna detected was in deep sea and close to the fauna of the Nansen Basin (Central Arctic). Furthermore, we found tintinnid ciliate loricae belonging to the following seven species: Tintinnopsis ventricosoides, Tintinnopsis fimbriata, Tintinnopsis turbo, Tintinnopsis nitida, Tintinnopsis sp. cf. fusus (?), Tintinnopsis sp., and Stenosemella nivalis. In the study area, the tintinnid ciliate loricae of these species were discovered for the first time and traced mainly in the coastal shelf zone, which can be explained by their ecology. The only exception is that of T. nitida, which was found only on the continental slope of the Laptev Sea. Our findings advance knowledge on the biodiversity of Arctic seas and can be used to monitor ecological and paleoceanographic changes in the Arctic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Agatha S (2008) Redescription of the tintinnid ciliate Tintinnopsis fimbriata Meunier, 1919 (Spirotricha, Choreotrichida) from coastal waters of Northern Germany. In: Aescht E Berger H (eds) The Wilhelm Foissner Festschrift: A tribute to an outstanding protistologist on the occasion of his 60th birthday. Denisia 23:261–272.

  • Alexandrov VY, Martin Th, Kolatschek J, Eicken H, Kreyscher M, Makshtas AP (2000) Sea ice circulation in the Laptev Sea and ice export to the Arctic Ocean: results from satellite remote sensing and numerical modeling. J Geophys Res 105:17143–17159. https://doi.org/10.1029/2000JC900029

    Article  Google Scholar 

  • AMAP (1998) AMAP Assessment Report: Arctic Pollution Issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.

  • Anderson LG, Björk G, Jutterström S, Pipko I, Shakhova N, Semiletov I, Wåhlström I (2011) East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 8:1745–1754. https://doi.org/10.5194/bg-8-1745-2011

    Article  CAS  Google Scholar 

  • Astakhov AS, Kalugin IA, Xuefa S, Aksentov KI, Darin AV, Limin Hu, Babich VV, Melgunov MS, Plotnikov VV (2021) The role of ice cover in the formation of bottom sediment chemical composition on the East Siberian shelf. Geochem Int 59:585–598. https://doi.org/10.3157/S0016752521050022

    Article  CAS  Google Scholar 

  • Astakhov AS, Aksentov KI, Babich VV, Darin AV, Kalugin IA, Melgunov MS, Sattarova VV, Limin Hu, Xuefa S (2022) Ice Coverage of the Laptev Sea and air temperature variation during recent centuries: observed Data and reconstructions using a geochemical proxy. Curr Chin Sci 2:198–212. https://doi.org/10.2174/2210298102666220317102007

    Article  Google Scholar 

  • Atlas of marine and coastal biological diversity of the Russian Arctic (2011). WWF, Moscow.

  • Beers JR, Reid FMH, Stewart GL (1980) Microplankton population structure in southern California nearshore waters in late spring. Mar Biol 60:209–226

    Article  Google Scholar 

  • Behrends M, Hoops E, Peregovich B (1999) Distribution patterns of heavy minerals in Siberian Rivers, the Laptev Sea and the Eastern Arctic Ocean: an approach to identify sources, transport and pathways of terrigenous matter. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten HW, Melles M, Thiede J, Timokhov L (eds) Land-Ocean systems in the Siberian Arctic: dynamics and History. Springer-Verlag, Berlin, pp 265–286

    Chapter  Google Scholar 

  • Bernstein T (1934) Zooplankton des Nordlischen teiles des Karischen Meeres. Transactions Arct Inst 9:3–58

    Google Scholar 

  • Bjørklund KR (1976) Radiolaria from the Norwegian Sea, Leg 38 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project. Washington. U.S. Govt Print Office 38:1101–1168

    Google Scholar 

  • Bjørklund KR, Ciesielski PF (1994) Ecology, morphology, stratigraphy, and the paleoceanographic significance of Cycladophora davisiana davisiana. Part I: Ecology and morphology. Mar Micropaleontol 24:71–88. https://doi.org/10.1016/0377-8398(94)90012-4

    Article  Google Scholar 

  • Bjørklund KR, Kruglikova SB (2003) Polycystine radiolarians in surface sediments in the Arctic Ocean basins and Marginal Seas. Mar Micropaleontol 49:231–273. https://doi.org/10.1016/S0377-8398(03)00036-7

    Article  Google Scholar 

  • Bjørklund KR, Cortese G, Swanberg N, Schrader HJ (1998) Radiolarian faunal provinces in surface sediments of the Greenland, Iceland and Norwegian (GIN) Seas. Mar Micropaleontol 35:105–140

    Article  Google Scholar 

  • Boltovskoy D, Vivequin SM, Swanberg NR (1995) Tintinnids and other microplankton from the Greenland Sea: abundance and distribution in the marginal ice zone (May June 1989). Mar Ecol 16:117–131. https://doi.org/10.1111/j.1439-0485.1995.tb00399.x

    Article  Google Scholar 

  • Borodachev VA, Borodachev VE (2016) Laptev Sea ice extent in Arctic Climate fluctuation conditions. Arct Antarct Alp Res 3:60–73

    Google Scholar 

  • Braarud T, Gaarder KR, Nordli O (1985) Seasonal changes at various points off the Norwegian west coast. 1958. Fiskeridir Skr Ser Havunders 12:1–77

    Google Scholar 

  • Brandt K (1896) Die Tintinnen. Bibliotheca Zoologica 20.

  • Burkovsky IV (1976) New data on tintinnids (Tintinida, Ciliata) of the Arctic and revision of the fauna. Zool Zh 55:325–336

    Google Scholar 

  • Burkovsky IV, Zamyshlyak EA, Poskryakova NP (1974) Revision of the fauna of Tintinnida (Ciliata) of the White Sea. Zool Zh 53:1757–1766

    Google Scholar 

  • Calbet A, Saiz E (2005) The ciliate—copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167. https://doi.org/10.3354/ame038157

    Article  Google Scholar 

  • Carey PG (1992) Marine Interstitial Ciliates: an Illustrated Key. London, New York: Chapman and Hall [Google Scholar].

  • Cleve PT (1899) Plankton collected by the Swedish expedition to Spitzbergen in 1898. K Sven Vetensk Akad Handl 32:1–51

    Google Scholar 

  • Cortese G, Bjørklund KR (1998) The taxonomy of boreal Atlantic Ocean Actinommida (Radiolaria). Micropaleontology 44:149–160

    Article  Google Scholar 

  • Cortese G, Bjørklund KR, Dolven JK (2003) Polycystine radiolarians in the Greenland-Iceland-Norwegian Seas: species and assemblage distribution. Sarsia 88:65–88. https://doi.org/10.1080/00364820308466

    Article  Google Scholar 

  • Deming J, Fortier L, Fukuchi M (2002) The international North Water polynya study (NOW): a brief overview. Deep Sea Res Part II 49:4887–4892

    Article  Google Scholar 

  • Dmitrenko IA, Holemann JA, Kirillov SA, Berezovskaya SL, Kassens H (2001) Role of barotropic sea level changes in current formation on the eastern shelf of the Laptev Sea. Dokl Earth Sci 377:243–249

    Google Scholar 

  • Dmitrenko IA, Kirillov SA, Eicken H, Markova N (2005) Wind-driven summer surface hydrography of the Eastern Siberian shelf. Geophys Res Lett 32:L14613. https://doi.org/10.1029/2005GL023022

    Article  Google Scholar 

  • Dmitrenko IA, Kirillov SA, Krumpen T, Makhotin M, Abrahamsen EP, Willmes S et al (2010) Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: evidence from summer-to-winter hydrographic records of 2007–2009. Cont Shelf Res 30:1656–1664. https://doi.org/10.1016/j.csr.2010.06.012

    Article  Google Scholar 

  • Dolan JR (2013) Introduction to Tintinnids. In: Dolan JR, Montagnes DJS, Agatha S et al (eds) The Biology and Ecology of Tintinnid ciliates: Models for marine plankton. UK Wiley-Blackwell, Oxford, pp 1–16

    Google Scholar 

  • Dolan JR, Pierce RW (2013) Diversity and distributions of Tintinnids. In: Dolan JR, Montagnes DJS, Agatha S et al (eds) The Biology and Ecology of Tintinnid ciliates: models for marine plankton. UK Wiley-Blackwell, Oxford, pp 214–243

    Google Scholar 

  • Dolan JR, Pierce RW, Yang E-J (2017) Tintinnid ciliates of the marine microzooplankton in Arctic Seas: a compilation and analysis of species records. Polar Biol 40:1247–1260. https://doi.org/10.1007/s00300-016-2049-0

    Article  Google Scholar 

  • Dovgal IV, Gavrilova NA (2018) Diversity and functions of loricae in ciliates (Ciliophora). Mar Biol 3:13–21. https://doi.org/10.21072/mbj.2018.03.3.02

    Article  Google Scholar 

  • Dudarev OV, Charkin AI, Shakhova NE et al (2016) Modern lithomorphogenesis on the Eastern Arctic Shelf of Russia. Polytechnic University, Tomsk

    Google Scholar 

  • Dudarev O, Charkin A, Shakhova N, Ruban A, Chernykh D, Vonk J, Tesi T, Martens J et al (2022) East Siberian Sea: interannual heterogeneity of the suspended particulate matter and its biogeochemical signature. Prog Oceanogr 208:102903. https://doi.org/10.1016/j.pocean.2022.102903

    Article  Google Scholar 

  • Echols RJ, Fowler GA (1973) Agglutinated tintinnid loricae from some recent and late pleistocene shelf sediments. Micropaleontology 19:431–443. https://doi.org/10.2307/1484906

    Article  Google Scholar 

  • Ehrenberg CG (1873) Mikrogeologische Studien über das kleinste Leben der Meeres-Tiefgründe aller Zonen und dessen geologischen Einfluss. Abh. Königl. Akad. Wiss. Berlin, pp 131–399.

  • Feng M, Zhang W, Xiao T (2014) Spatial and temporal distribution of tintinnid (Ciliophora: Tintinnida) communities in Kongsfjordn, Svalbard (Arctic), during summer. Polar Biol 37:291–296. https://doi.org/10.1007/s00300-013-1442-1

    Article  Google Scholar 

  • Gold K (1979) Scanning Electron Microscopy of Tintinnopsis parva: studies on particle accumulation and the Striae. J Protozool 26:415–419

    Article  Google Scholar 

  • Gorbachik TN, Dolitskaya IV, Kopaevich LF, Pirumova LG (1996) Micropaleontology. Publishing House of Moscow State University.

  • Gordeev VV, Sidorov IS (1993) Concentrations of major elements and their outflow into the Laptev Sea by the Lena River. Mar Chem 43:33–45

    Article  CAS  Google Scholar 

  • Gukov AYu (2009) Great Siberian polynya, XXI century. Sci Technol Yakutia 1:99–103

    Google Scholar 

  • Holmes ML, Creager YS (1974) Holocene history of the Laptev Sea Continental shelf. In: Herman Y (ed) Marine Geology and Oceanography of the Arctic Seas. Springer, Berlin, pp 211–229

    Chapter  Google Scholar 

  • Hulsemann K (1963) Radiolaria in plankton from the Arctic Drift in Station T-3. Including the description of three new species. Arct Inst North Am Tech Pap 13:1–52

    Google Scholar 

  • Itaki T, Ito M, Narita H, Ahagon N, Sakai H (2003) Depth distribution of radiolarians from the Chukchi and Beaufort Seas, western Arctic, Deep Sea Res. Part I Oceanogr Res Pap 50:1507–1522. https://doi.org/10.1016/j.dsr.2003.09.003

    Article  Google Scholar 

  • Jensen F, Hansen BW (2000) Ciliates and heterotrophic dinoflagellates in the marginal ice zone of the central Barents Sea during spring. J Mar Biol Assoc UK 80:45–54. https://doi.org/10.1017/S0025315499001551

    Article  Google Scholar 

  • Jonsson PR, Johansson M, Pierce RW (2004) Attachment to suspended particles may improve foraging and reduce predation risk for tintinnid ciliates. Limnol Oceanogr 49:1907–1914. https://doi.org/10.4319/lo.2004.49.6.1907

    Article  Google Scholar 

  • Jørgensen E (1905) The Protist plankton and the diatoms in bottom samples. VII. Radiolaria. In: Nordgaard O (ed). Hydrographical and Biological investigations in Norwegian Fiords. Bergens Museum, 114–142 (+ 11 radiolarian plates).

  • Kofoid CA, Campbell AS (1929) A conspectus of the marine and fresh-water Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific 1904–1905. Univ Calif Publ Zool 34:1–403

    Google Scholar 

  • Kosheleva VA (2002) Peculiarities of the Lithology of neopleistocene-holocene sediments in the Russian Arctic. Lithol Miner Resour 37:137–147. https://doi.org/10.1023/A:1014872400182

    Article  CAS  Google Scholar 

  • Kruglikova SB (1989) Arctic Ocean radiolarians. In: Herman Y (ed) The Arctic Seas –Climatology, Oceanography, Geology, and Biology. van Nostrand Reinhold Company, New York, pp 461–480

    Chapter  Google Scholar 

  • Kruglikova SB, Bjorklund KR (2010) Invasion of the modern Polycystina (Euradiolaria) into the Arctic Ocean: paleoecological aspects. Russ J Biol Invasions 1:95–101. https://doi.org/10.1134/S2075111710020074

    Article  Google Scholar 

  • Kruglikova SB, Bjørklund KR, Zas’ko DN, (2007) Distribution of Polycystina (Euradiolaria) in the Bottom Sediments and Plankton of the Arctic Ocean and marginal Arctic seas. Dokl Biol Sci 415:284–287. https://doi.org/10.1134/S0012496607040102

    Article  CAS  Google Scholar 

  • Kruglikova SB (1977) Radiolaria. Atlas of Microorganisms in Bottom Sediments of the Oceans: diatoms, radiolaria, silicoflagellates and coccoliths. In: AP Jouse (ed). Academy of sciences USSR, Nauka, Moskow (In Russian)

  • Kruglikova SB (2013) Radiolarians-Polycystina from the bottom sediments of the World Ocean as bioindicators of environmental fluctuations. GEOS. Moskow (In Russian).

  • Laval-Peuto M (1981) Construction of the lorica in Ciliata Tintinnina. In vivo study of Favella ehrenbergi: variability of the phenotypes during the cycle, biology, statistics, biometry. Protistologica 17:249–327

    Google Scholar 

  • Levander KM (1891) Mikrofaiinistiska anteckningar. Medd Soc Fauna Flora Fenn 17:129–143

    Google Scholar 

  • Levander KM (1894) Materialien zur Kenntniss der Wasserfauna in der Umgebung von Helsingfors, mit besonderer Berücksichtigung der Meeresfauna. I. Protozoa Acta Soc Fauna Flora Fenn 12:1–115

    Google Scholar 

  • März C, Meinhardt A-K, Bernhard S, Brumsack H (2015) Silica diagenesis and benthic fluxes in the Arctic Ocean. Mar Chem 171:1–9. https://doi.org/10.1016/j.marchem.2015.02.003

    Article  CAS  Google Scholar 

  • Matul AG (2009) Quaternary biostratigraphy and paleooceanology of the Sea of Okhotsk and other sub-Arctic regions. GEOS, Moskow (In Russian).

  • Meunier A (1919) Microplankton de la mer Flamande: Les Tintinnides. Mém Mus RHist Nat Belg 8:1–59

    Google Scholar 

  • Meunier A (1910) Microplankton des Mers de Barents et de Kara. Duc d'Orléans. Campagne arctique de 1907. Imprimerie scientifique Charles Bulens: Bruxelles. 355 + atlas (XXXVII plates).

  • Mironova EI, Telesh IV, Skarlato SO (2009) Planktonic Ciliates of the Baltic sea (a review). Inland Water Biol 2:13–24. https://doi.org/10.1134/S1995082909010039

    Article  Google Scholar 

  • Nelson RJ, Ashjian CJ, Bluhm B, Conlan KE et al (2014) Biodiversity and biogeography of the lower trophic taxa of the Pacific Arctic region: sensitivities to climate change. In: Grebmeier JM, Maslowski W (eds) The Pacific Arctic region: ecosystem status and trends in a rapidly changing environment. Springer, Dordrecht, pp 269–336

    Chapter  Google Scholar 

  • Nigrini C, Moore TC (1979) A guide to modern Radiolaria. Cushman Found Foraminiferal Res, Spec Publ 16:1–248

    Google Scholar 

  • Nikolaeva NA, Dudarev OV (2002) A mineralogical composition of surface sediments from southeastern area of the Laptev Sea. In: Likht FR, Botsul AI, Nikolaeva NA, Utkin IV (eds) Conditions of bottom sedimentation and related minerals in the Marginal Seas. Dal’nauka, Vladivostok, pp 25–29

    Google Scholar 

  • Nikolaeva NA, Derkachev AN, Dudarev OV (2013) Mineral composition of sediments from the eastern Laptev Sea shelf and East Siberian Sea. Oceanology 53:472–480

    Article  Google Scholar 

  • Obrezkova MS, Kolyada AE, Tsoy IB (2019) Distribution of diatoms in the surface sediments of the Eastern Arctic seas (based on the 77th and 83rd cruises of the R/V Akademik MA Lavrentiev, 2016, 2018). Voprosy Sovremennoi Algologii (issues of Modern Algology) 2:50–54. https://doi.org/10.33624/2311-0147-2019-2(20)-50-54

    Article  Google Scholar 

  • Obrezkova MS, Tsoy IB, Kolyada AE, Shi X, Liu Y (2022) Distribution of diatoms in seafloor surface sediments of the Laptev East Siberian and Chukchi seas: implication for environmental reconstructions. Polar Biol. https://doi.org/10.1007/s00300-022-03105-5

  • Osadchiev A, Frey D, Spivak E, Shchuka S, Tilinina N, Semiletov I (2021) Structure and inter-annual variability of the freshened surface layer in the Laptev and East-Siberian Seas during Ice-Free Periods. Front Mar Sci 8:735011. https://doi.org/10.3389/fmars.2021.735011

    Article  Google Scholar 

  • Pierce RW, Turner JT (1993) Global biogeography of marine tintinnids. Mar Ecol Prog Ser 94:11–26. https://doi.org/10.3354/MEPS094011

    Article  Google Scholar 

  • Popofsky A (1908) Die Radolarien der Antarktis. Deutsche Südpolar-Expedition 1901–1903. Bd 10, Zoologie, Bd 3, Berlin, pp 185–305.

  • Popov AV, Gavrilo MV (2011) Flaw polynyas. In: Spiridonov VA, Gavrilo MV, Krasnova ED, Nikolaeva NG (eds) Atlas of marine and coastal biological diversity of the Russian Arctic. WWF, Moscow, pp 28–29

    Google Scholar 

  • Polyakova YeI (1997) The Eurasian Arctic Seas during the Late Cenozoic Scientific World, Moskow (In Russian).

  • Rachold V, Alabyan A, Hubberten HW et al (1996) Sediment transport to the Laptev Sea–hydrology and geochemistry of the Lena River. Polar Res 15:183–196

    Google Scholar 

  • Report on the results of expedition research on cruise 83 of the R/V Akademik M.A. Lavrentiev Chukchi, East Siberian and Laptev Seas (2019) POI FEB RAS, Vladivostok.

  • Riedel WR (1958) Radiolaria in Antarctic sediments. B.A.N.Z. Antarct Res Exped Rep, Ser B 6:217–255

    Google Scholar 

  • Romanovskii NN, Hubberten HW (2006) Permafrost and gas hydrate stability zone on the Laptev Sea shelf (main results of ten-year Russian-German investigation). Earth’s Cryosphere 10:61–68

    Google Scholar 

  • Rudels B, Jones EP, Anderson LG, Kattner G (1994) On the intermediate depth waters of the Arctic Ocean, in: the Polar Oceans and their role in shaping the global environment. In: Johannessen OM, Muench RD, Overland JE (eds) The Nansen Centennial Volume. Geophysical Monograph 85. American Geophysical Union, Washington, D.C., pp 33–46

    Google Scholar 

  • Ryabchuk DV, Prishchepenko DV, Kovaleva OA, Zhamoida VA, Grigoriev AG, Sergeev AYu, Budanov LM, Nesterova EN, Dronʼ OV (2020) Lithology of the East-Siberian sea surficial sediments based on results of 1:1m scale geological mapping (sheets r56–60 of state geological map). Relief Quaternary Formations Arct, Subarct North-West of Russia 7:188–197. https://doi.org/10.24411/2687-1092-2020-10729

    Article  Google Scholar 

  • Sattarova VV, Aksentov KI (2021) Trace metals in deep-sea sediments collected from Kuril Basin (Sea of Okhotsk) and Kuril-Kamchatka Trench area. Mar Pollut Bull 164:112055. https://doi.org/10.1016/j.marpolbul.2021.112055

    Article  CAS  Google Scholar 

  • Semenov YuP (1965) On some features of the formation of bottom sediments in the East Siberian and Chukchi Seas. Anthropogenic period in the Arctic and sub-Arctic. Proc NIIGA Moscow 143:350–352

    Google Scholar 

  • Semiletov I, Dudarev O, Luchin V, Charkin A et al (2005) The East-Siberian Sea as transition zone between the Pacific origin water and local shelf water. Geophys Res Lett 32:L10614. https://doi.org/10.1029/2005GLO22490

    Article  Google Scholar 

  • Sherr EB, Sherr BF, Hartz AJ (2009) Microzooplankton grazing impact in the Western Arctic Ocean. Deep Sea Res II 56:1264–1273. https://doi.org/10.1016/J.DSR2.2008.10.036

    Article  Google Scholar 

  • Strathmann RR, Grünbaum D (2006) Good eaters, poor swimmers: compromises in larval form. Integr Comp Biol 46:312–322. https://doi.org/10.1093/icb/icj031

    Article  Google Scholar 

  • Strom SL, Fredrickson KA (2008) Intense stratification leads to phytoplankton nutrient limitation and reduced microzooplankton grazing in the southeastern Bering Sea. Deep Res Part II 55:1761–1774. https://doi.org/10.1016/j.dsr2.2008.04.008

    Article  Google Scholar 

  • Swanberg NR, Eide LK (1992) The radiolarian fauna at the ice edge in the Greenland Sea during summer, 1988. J Mar Res 50:297–320

    Article  CAS  Google Scholar 

  • Taniguchi A (1984) Microzooplankton biomass in the Arctic and sub-Arctic Pacific Ocean in summer. Mem Natl Inst Polar Res 32:63–76

    Google Scholar 

  • Tibbs JF (1967) On some planktonic protozoa taken from the track of drift station Arlis I, 1960–1961. J Arct Inst North Am 20:247–254

    Google Scholar 

  • Timokhov LA (1994) Regional characteristics of the Laptev and the East Siberian Seas: climate, topography, ice phases, thermohaline regime, circulation. Ber Polarforsch 144:15–31

    Google Scholar 

  • Vasilenko L (2022) Catalog of sites 83rd cruises of the R/V Akademik M. A. Lavrentyev, coordinates, depths of sites, and the presence the loricae of Tintinnid ciliates and Radiolarian skeletons in sediments. Mendeley Data V1. https://data.mendeley.com/datasets/62x85yj5j4/1 on 2022-12-21

  • Weingartner T, Danielson S, Sasaki Y et al (1999) The Siberia coast current a wind- and buoyancy forced Arctic coastal current. J Geophys Res 104:29697–29713

    Article  Google Scholar 

  • Winter A, Stockwell D, Hargraves PE (1986) Tintinnid agglutination of coccoliths: a selective or random process? Mar Micropaleontol 10:375–379. https://doi.org/10.1016/0377-8398(86)90038-1

    Article  Google Scholar 

  • Yashin DS (2000) Holocene sedimentation in the Russian Arctic seas. Geological-geophysical features of the lithosphere in the Arctic region. VNIIOkeangeologia. St Petersburg 3:57–67

    Google Scholar 

  • Zalogin BS, Kosarev AN (1999) Seas. Mysl’. Moskow (In Russian).

  • Zasʼko DN, Kosobokova KN (2014) Radiolarians in plankton of the Arctic basin: species composition and distribution. Zool Zh 93:1057–1069. https://doi.org/10.7868/S0044513414090116

    Article  Google Scholar 

  • Zdobin DYu, Verzhbitsky VE, Khudoley AK, Tuchkova MI, Rogov MA (2015) Composition and properties of bottom sediments of inlets of the Laptev Sea. Eng Geol 5:64–72

    Google Scholar 

Download references

Acknowledgements

The authors thank corresponding member RAS A.I. Zhamoida for consultations and discussion of the work at the initial stage of its preparation. The authors also thank Prof. A.S. Astakhov and Dr. Hu Limin for providing the sediment samples and Dr. A.N. Derkachev for consultations on the results of microprobe analysis. In addition, the authors would like to thank the staff of the Laboratory of Micro- and Nano-Research of the Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences for carrying out the microprobe analysis and the staff of the Electron Microscope Laboratory of the First Institute of Oceanography of the Ministry of Natural Resources of the People’s Republic of China for photographing the skeletons of radiolarians and tintinnid ciliate loricae. The authors thank the anonymous reviewers for their valuable comments on this manuscript.

Funding

This study was funded by the Russian Science Foundation, grants numbers 21-17-00081 (sample preparation, lithological analysis, and interpretation of results) and 19-77-10030 (micropaleontological studies, microprobe analysis, and interpretation of results). The expedition works were supported by the Ministry of Sciences and Education of the Russian Federation (project number 121021700342-9) and the National Natural Science Foundation of China (Grant No. 42130412).

Author information

Authors and Affiliations

Authors

Contributions

LV designed the research, analyzed the radiolarians and tintinnid lorica samples, and prepared the manuscript. YV described the lithology of the samples, drew the figures, and acquired funding for the analyses. AB led the cruise. IT, SX, and LY acquired the funding for the cruise and laboratory processing of samples. All authors have critically revised and approved the manuscript.

Corresponding author

Correspondence to Lidiya Vasilenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilenko, L., Vasilenko, Y., Bosin, A. et al. Distribution of radiolarians and tintinnid ciliates in Upper Holocene sediments of Laptev and East Siberian seas. Polar Biol 46, 35–51 (2023). https://doi.org/10.1007/s00300-022-03108-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-022-03108-2

Keywords

Navigation