Skip to main content

Advertisement

Log in

Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund, Svalbard

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Changes in vegetation biomass have a great impact on many aspects of the Arctic ecosystem, and historical variations of biomass in Svalbard during the Holocene remain poorly understood. In this study, we collected a palaeo-notch sediment profile in Ny-Ålesund, Svalbard, performed organic biomarker and geochemical analysis on the sediments, reconstructed the photosynthetic biomass record during the interval of 9400–2200 BP, and examined the relationship between the photosynthetic biomass changes and Holocene temperature records in the Arctic region. The photosynthetic biomass production in Ny-Ålesund experienced four development periods. It rose steadily at the beginning of the Holocene and became stabilized at a high level during the Holocene thermal maximum. However, the photosynthetic biomass dropped sharply during the mid-Holocene transition. After that, it showed a small peak during the interval of 3000–2500 BP. The historical photosynthetic biomass record is in good agreement with the temperature records: the photosynthetic biomass production increases during warmer periods, and vice versa. Therefore, temperature is likely the driving factor controlling the photosynthetic biomass production. This study improves our understanding of the terrestrial ecosystem and its responses to climate change in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alsos IG, Sjögren P, Edwards ME, Landvik JY, Gielly L, Forwick M, Coissac E, Brown AG, Jakobsen LV, Føreid MK (2016) Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change. Holocene 26:627–642

    Article  Google Scholar 

  • Andersen C, Koc N, Jennings A, Andrews J (2004) Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography. https://doi.org/10.1029/2002PA000873

    Article  Google Scholar 

  • Bechtel A, Schubert CJ (2009) A biogeochemical study of sediments from the eutrophic Lake Lugano and the oligotrophic Lake Brienz, Switzerland. Org Geochem 40:1100–1114

    Article  CAS  Google Scholar 

  • Birks HH (1991) Holocene vegetational history and climatic change in west Spitsbergen—plant macrofossils from Skardtjørna, an Arctic lake. Holocene 1:209–218

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Article  CAS  Google Scholar 

  • Boon PI, Virtue P, Nichols PD (1996) Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar Freshw Res 47:27–41

    Article  CAS  Google Scholar 

  • Buchwal A, Rachlewicz G, Fonti P, Cherubini P, Gärtner H (2013) Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biol 36:1305–1318

    Article  Google Scholar 

  • Cheng W, Sun L, Kimpe LE, Mallory ML, Smol JP, Gallant LR, Li J, Blais JM (2016) Sterols and stanols preserved in pond sediments track seabird biovectors in a High Arctic environment. Environ Sci Technol 50:9351–9360

    Article  CAS  PubMed  Google Scholar 

  • Chistyakova NO, Ivanova EV, Risebrobakken B, Ovsepyan EA, Ovsepyan YS (2010) Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages. Oceanology 50:573–581

    Article  Google Scholar 

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627

    Article  CAS  Google Scholar 

  • Divine D, Isaksson E, Martma T, Meijer HAJ, Moore J, Pohjola V, van de Wal RSW, Godtliebsen F (2011) Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data. Polar Res 30:7379

    Article  Google Scholar 

  • Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol. https://doi.org/10.1155/2011/893790

    Article  Google Scholar 

  • Forman SL, Mann DH, Miller GH (1987) Late Weichselian and Holocene relative sea-level history of Bröggerhalvöya, Spitsbergen. Quat Res 27:41–50

    Article  Google Scholar 

  • Forman S, Lubinski D, Ingólfsson Ó, Zeeberg J, Snyder J, Siegert M, Matishov G (2004) A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quat Sci Rev 23:1391–1434

    Article  Google Scholar 

  • Forman SL, Miller GH (1984) Time-dependent soil morphologies and pedogenic processes on raised beaches, Bröggerhalvöya, Spitsbergen, Svalbard Archipelago. Arct Alp Res 16:381–394

    Article  Google Scholar 

  • Hu QH, Sun LG, Xie ZQ, Emslie SD, Liu XD (2013) Increase in penguin populations during the Little Ice Age in the Ross Sea. Antarctica. Sci Rep 3:2472

    Article  PubMed  Google Scholar 

  • Huang J, Sun L, Huang W, Wang X, Wang Y (2010) The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold Hills, East Antarctica. Polar Biol 33:1399–1406

    Article  Google Scholar 

  • Huang J, Sun L, Wang X, Wang Y, Huang T (2011) Ecosystem evolution of seal colony and the influencing factors in the 20th century on Fildes Peninsula, West Antarctica. J Environ Sci 23:1431–1436

    Article  CAS  Google Scholar 

  • Huybers P (2006) Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313:508–511

    Article  CAS  PubMed  Google Scholar 

  • Isaksson E, Hermanson M, Hicks S, Igarashi M, Kamiyama K, Moore J, Motoyama H, Muir D, Pohjola V, Vaikmäe R, van de Wal RSW, Watanabe O (2003) Ice cores from Svalbard––useful archives of past climate and pollution history. Phys Chem Earth 28:1217–1228

    Article  Google Scholar 

  • Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quat Sci Rev 29:1301–1312

    Article  Google Scholar 

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML (2004) Holocene thermal maximum in the western Arctic (0–180 W). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  • Kawamura K, Ishiwatari R (1981) Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate. Geochim Cosmochim Acta 45:149–155

    Article  CAS  Google Scholar 

  • Kristjánsdóttir GB, Moros M, Andrews JT, Jennings AE (2017) Holocene Mg/Ca, alkenones, and light stable isotope measurements on the outer North Iceland shelf (MD99-2269): a comparison with other multi-proxy data and sub-division of the Holocene. Holocene 27:52–62

    Article  Google Scholar 

  • Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen J-I, Vorren TO (1998) The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quat Sci Rev 17:43–75

    Article  Google Scholar 

  • Larsen DJ, Miller GH, Geirsdóttir Á, Ólafsdóttir S (2012) Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland. Quat Sci Rev 39:14–25

    Article  Google Scholar 

  • Lehman SJ, Forman SL (1992) Late Weichselian glacier retreat in Kongsfjorden, west Spitsbergen, Svalbard. Quat Res 37:139–154

    Article  Google Scholar 

  • Liu X, Sun L, Xie Z, Yin X, Wang Y (2005) A 1300-year record of penguin populations at Ardley Island in the Antarctic, as deduced from the geochemical data in the ornithogenic lake sediments. Arct Antarct Alp Res 37:490–498

    Article  Google Scholar 

  • Liu X, Zhao S, Sun L, Luo H, Yin X, Xie Z, Wang Y, Liu K, Wu X, Ding X (2006) Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea. J Paleolimnol 36:259–279

    Article  Google Scholar 

  • Mangerud J, Bolstad M, Elgersma A, Helliksen D, Landvik JY, Lønne I, Lycke AK, Salvigsen O, Sandahl T, Svendsen JI (1992) The last glacial maximum on Spitsbergen, Svalbard. Quat Res 38:1–31

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  CAS  Google Scholar 

  • Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14

    Article  Google Scholar 

  • Muraoka H, Noda H, Uchida M, Ohtsuka T, Koizumi H, Nakatsubo T (2008) Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctic tundra ecosystem, Ny-Ålesund, Svalbard: implications for their role in ecosystem carbon gain. J Plant Res 121:137

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt H, Young G (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  CAS  Google Scholar 

  • Ogura K, Machihara T, Takada H (1990) Diagenesis of biomarkers in Biwa Lake sediments over 1 million years. Org Geochem 16:805–813

    Article  CAS  Google Scholar 

  • Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci 5:808–812

    Article  CAS  Google Scholar 

  • Rasmussen TL, Thomsen E, Skirbekk K, Ślubowska-Woldengen M, Kristensen DK, Koç N (2014) Spatial and temporal distribution of Holocene temperature maxima in the northern Nordic seas: interplay of Atlantic-, Arctic- and polar water masses. Quat Sci Rev 92:280–291

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  CAS  Google Scholar 

  • Reusche M, Winsor K, Carlson AE, Marcott SA, Rood DH, Novak A, Roof S, Retelle M, Werner A, Caffee M (2014) 10 Be surface exposure ages on the late-Pleistocene and Holocene history of Linnébreen on Svalbard. Quat Sci Rev 89:5–12

    Article  Google Scholar 

  • Risebrobakken B, Moros M, Ivanova EV, Chistyakova N, Rosenberg R (2010) Climate and oceanographic variability in the SW Barents Sea during the Holocene. Holocene 20:609–621

    Article  Google Scholar 

  • Roland TP, Caseldine CJ, Charman DJ, Turney CSM, Amesbury MJ (2014) Was there a ‘4.2 ka event’ in Great Britain and Ireland? Evidence from the peatland record. Quat Sci Rev 83:11–27

    Article  Google Scholar 

  • Rontani JF, Volkman JK (2003) Phytol degradation products as biogeochemical tracers in aquatic environments. Org Geochem 34:1–35

    Article  CAS  Google Scholar 

  • Røthe TO, Bakke J, Vasskog K, Gjerde M, D'Andrea WJ, Bradley RS (2015) Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quat Sci Rev 109:111–125

    Article  Google Scholar 

  • Rozema J, Boelen P, Doorenbosch M, Bohncke S, Blokker P, Boekel C, Broekman R, Konert M (2006) A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecol 182:155–173

    Article  Google Scholar 

  • Rozema J, Weijers S, Broekman R, Blokker P, Buizer B, Werleman C, El Yaqine H, Hoogedoorn H, Fuertes MM, Cooper E (2009) Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Glob Change Biol 15:1703–1715

    Article  Google Scholar 

  • Sun L, Xie Z, Zhao J (2000) A 3000-year record of penguin populations. Nature 407:858–858

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Liu X, Yin X, Zhu R, Xie Z, Wang Y (2004) A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biol 27:495–501

    Article  Google Scholar 

  • Svendsen JI, Elverhmi A, Mangerud J (1996) The retreat of the Barents Sea Ice Sheet on the western Svalbard margin. Boreas 25:244–256

    Article  Google Scholar 

  • van der Bilt WGM, Bakke J, Vasskog K, D'Andrea WJ, Bradley RS, Ólafsdóttir S (2015) Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quat Sci Rev 126:201–218

    Article  Google Scholar 

  • van der Bilt WG, D'Andrea WJ, Bakke J, Balascio NL, Werner JP, Gjerde M, Bradley RS (2016) Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard. Quat Sci Rev 183:204–213

    Article  Google Scholar 

  • Van der Knaap W (1988) A pollen diagram from Brøggerhalvøya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arct Alp Res 20:106–116

    Article  Google Scholar 

  • Van Der Wal R, Stien A (2014) High-arctic plants like it hot: a long-term investigation of between-year variability in plant biomass. Ecology 95:3414–3427

    Article  Google Scholar 

  • Walker DA, Raynolds MK, Daniëls FJ, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Wang J, Wang Y, Wang X, Sun L (2007) Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years. Polar Biol 30:1475–1481

    Article  Google Scholar 

  • Wang J, Sun L (2007) Molecular organic geochemistry of ornithogenic sediment from Svalbard, Arctic. Chin J Pol Sci 20:32–39

    Google Scholar 

  • Weijers S, Broekman R, Rozema J (2010) Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat Sci Rev 29:3831–3842

    Article  Google Scholar 

  • Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E (2013) Atlantic water advection versus sea–ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 28:283–295

    Article  Google Scholar 

  • Werner K, Müller J, Husum K, Spielhagen RF, Kandiano ES, Polyak L (2016) Holocene sea subsurface and surface water masses in the Fram Strait-Comparisons of temperature and sea–ice reconstructions. Quat Sci Rev 147:194–209

    Article  Google Scholar 

  • Xu L, Liu X, Sun L, Yan H, Liu Y, Luo Y, Huang J (2011) A 2200-year record of seabird population on Ganquan Island, South China Sea. Acta Geol Sin 85:957–967

    Article  CAS  Google Scholar 

  • Yang Z, Yuan L, Wang Y, Sun L (2017) Holocene climate change and anthropogenic activity records in Svalbard: a unique perspective based on Chinese research from Ny-Ålesund. Adv Polar Sci 28:81–90

    Google Scholar 

  • Yang Z, Sun L, Zhou X, Wang Y (2018a) Mid-to-late Holocene climate change record in palaeo-notch sediment from London Island. Svalbard. J Earth Syst Sci 127:57

    Article  CAS  Google Scholar 

  • Yang Z, Wang Y, Sun L (2018b) Records in palaeo-notch sediment: changes in palaeoproductivity and their link to climate change from Svalbard. Adv Polar Sci 29:243–253

    Google Scholar 

  • Yoon H, Khim B, Lee K, Park Y, Yoo K (2006) Reconstruction of postglacial paleoproductivity in Long Lake, King George Island, West Antarctica. Pol Polar Res 27:189–206

    Google Scholar 

  • Yuan L, Sun L, Long N, Xie Z, Wang Y, Liu X (2010) Seabirds colonized Ny-Ålesund, Svalbard, Arctic ~ 9400 years ago. Polar Biol 33:683–691

    Article  Google Scholar 

  • Yuan L, Sun L, Wei G, Long N, Xie Z, Wang Y (2011) 9400 yr BP: the mortality of mollusk shell (Mya truncata) at high Arctic is associated with a sudden cooling event. Environ Earth Sci 63:1385–1393

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Chinese Polar Environment Comprehensive Investigation & Assessment Programmes (CHINARE2017-02–01, CHINARE2017-04–04) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012). Samples provided by the Polar Sediment Repository of Polar Research Institute of China (PRIC). Samples Information and Data were issued by the Resource-sharing Platform of Polar Samples (https://birds.chinare.org.cn) maintained by Polar Research Institute of China (PRIC) and Chinese National Arctic & Antarctic Data Center (CN-NADC). We thank the Chinese Arctic and Antarctic Administration and PRIC for logistical support in field. We also thank the Governor of Svalbard for permission to carry out fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhouqing Xie or Liguang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, J., Yuan, L. et al. Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund, Svalbard. Polar Biol 42, 991–1003 (2019). https://doi.org/10.1007/s00300-019-02493-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02493-5

Keywords

Navigation