Skip to main content

Advertisement

Log in

Trophic plasticity of Antarctic echinoids under contrasted environmental conditions

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Echinoids are common members of Antarctic zoobenthos, and different groups can show important trophic diversity. As part of the ANT-XXIX/3 cruise of RV Polarstern, trophic plasticity of sea urchins was studied in three neighbouring regions (Drake Passage, Bransfield Strait and Weddell Sea) featuring several depth-related habitats offering different trophic environments to benthic consumers. Three families with contrasting feeding habits (Cidaridae, Echinidae and Schizasteridae) were studied. Gut content examination and stable isotopes ratios of C and N suggest that each of the studied families showed a different response to variation in environmental and food conditions. Schizasteridae trophic plasticity was low, and these sea urchins were bulk sediment feeders relying on sediment-associated organic matter in all regions and/or depth-related habitats. Cidaridae consumed the most animal-derived material. Their diet varied according to the considered area, as sea urchins from Bransfield Strait relied mostly on living and/or dead animal material, while specimens from Weddell Sea fed on a mixture of dead animal material and other detritus. Echinidae also showed important trophic plasticity. They fed on various detrital items in Bransfield Strait, and selectivity of ingested material varied across depth-related habitats. In Weddell Sea, stable isotopes revealed that they mostly relied on highly 13C-enriched food items, presumably microbially reworked benthic detritus. The differences in adaptive strategies could lead to family-specific responses of Antarctic echinoids to environmental and food-related changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440. doi:10.1146/annurev-ecolsys-102209-144726

    Article  Google Scholar 

  • Bracher A, Huntemann M (2015) Chlorophyll-a concentration and sea ice concentration at AGT stations during POLARSTERN cruise ANT-XXIX/3 derived from the merged daily Full Product Set (FPS) of the GlobColour Archive. Accessed 16 Nov 2015. doi:10.1594/PANGAEA.847994

  • Brand TE (1976) Trophic relationships of selected benthic marine invertebrates and foraminifera in Antarctica. Antarct J US 11:24–26

    Google Scholar 

  • Brey T, Gutt J (1991) The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope (Antarctica): distribution, abundance and biomass. Polar Biol 11:227–232. doi:10.1007/BF00238455

    Article  Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560. doi:10.1002/rcm.5129

    Article  CAS  PubMed  Google Scholar 

  • Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82. doi:10.1007/s00300-003-0567-z

    Article  Google Scholar 

  • David B, Choné T, Festeau A, Mooi R, De Ridder C (2005) Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Sci Mar 69:201–203

    Article  Google Scholar 

  • De Ridder C, Foret T (2001) Non-parasitic symbioses between echinoderms and bacteria. In: Lawrence JM, Jangoux M (eds) Echinoderm studies. Balkema, Rotterdam, pp 111–169

    Google Scholar 

  • De Ridder C, Lawrence JM (1982) Food and feeding mechanisms: Echinoidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 57–115

    Google Scholar 

  • De Ridder C, Jangoux M, Van Impe E (1985) Food selection and absorption efficiency in the spatangoid echinoid, Echinocardium cordatum (Echinodermata). In: Keegan B, O’Connor B (eds) Proceedings of the 5th international conference, Galway, 1984. Balkema, Rotterdam, pp 245–251

  • DeNiro MJ, Epstein S (1981) Infuence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1

    Article  CAS  Google Scholar 

  • Dorschel B, Guutt J, Huhn O, Bracher A, Huntemann M, Hunneke W, Gebhardt C, Schröder M, Herr H (2015) Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. doi:10.1007/s00300-015-1861-2

    Google Scholar 

  • Dunton KH (2001) δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112. doi:10.1093/icb/41.1.99

    Google Scholar 

  • Fantle MS, Dittel AI, Schwalm SM, Epifanio CE, Fogel ML (1999) A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120:416–426. doi:10.1007/s004420050874

    Article  Google Scholar 

  • Gibson JAE, Trull T, Nichols PD, Summons RE, McMinn A (1999) Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: a potential indicator of past sea-ice extent. Geology 27:331. doi:10.1130/0091-7613(1999)027<0331:SOCROM>2.3.CO;2

    Article  CAS  Google Scholar 

  • Glover AG, Smith CR, Mincks SL, Sumida PYG, Thurber AR (2008) Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: evidence for a sediment “food bank” and similarities to deep-sea habitats. Deep Sea Res Part II Top Stud Oceanogr 55:2491–2501. doi:10.1016/j.dsr2.2008.06.008

    Article  Google Scholar 

  • Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarct Sci 19:165. doi:10.1017/S0954102007000247

    Article  Google Scholar 

  • Gutt J (2013) The expedition of the research vessel “Polarstern” to the Antarctic in 2013 (ANT-XXIX/3). Berichte zur Polar- und Meeresforsch 665:1–151

    Google Scholar 

  • Gutt J, Barnes D, Lockhart SJ, van de Putte A (2013) Antarctic macrobenthic communities: a compilation of circumpolar information. Nat Conserv 4:1–13. doi:10.3897/natureconservation.4.4499

    Article  Google Scholar 

  • Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663. doi:10.4319/lo.1984.29.3.0657

    Article  CAS  Google Scholar 

  • Hobson K, Welch H (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18. doi:10.3354/meps084009

    Article  CAS  Google Scholar 

  • Hughes AD, Brunner L, Cook EJ, Kelly MS, Wilson B (2012) Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment. PLoS ONE 7:e41243. doi:10.1371/journal.pone.0041243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob U, Terpstra S, Brey T (2003) High-Antarctic regular sea urchins—the role of depth and feeding in niche separation. Polar Biol 26:99–104. doi:10.1007/s00300-002-0453-0

    Article  Google Scholar 

  • Jaschinski S, Hansen T, Sommer U (2008) Effects of acidification in multiple stable isotope analyses. Limnol Oceanogr Methods 6:12–15. doi:10.4319/lom.2008.6.12

    Article  CAS  Google Scholar 

  • Lawrence JM, Sammarco PW (1982) Effects of feeding on the environment: Echinoidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 499–519

    Google Scholar 

  • Lawrence JM, Lawrence AL, Watts SA (2013) Feeding, digestion and digestibility of sea urchins. In: Lawrence JM (ed) Sea urchins: biology and ecology. Academic Press, London, pp 135–154

    Chapter  Google Scholar 

  • Lockhart S, Jones C (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas within the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192

    Google Scholar 

  • Lovvorn J, Cooper L, Brooks M, De Ruyck C, Bump J, Grebmeier J (2005) Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea. Mar Ecol Prog Ser 291:135–150. doi:10.3354/meps291135

    Article  CAS  Google Scholar 

  • Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115. doi:10.1007/s00442-008-1052-8

    Article  PubMed  Google Scholar 

  • Mincks SL, Smith CR, DeMaster DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment “food bank”. Mar Ecol Prog Ser 300:3–19. doi:10.3354/meps300003

    Article  CAS  Google Scholar 

  • Mincks SL, Smith CR, Jeffreys RM, Sumida PYG (2008) Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by δ13C and δ15N analysis. Deep Sea Res Part II Top Stud Oceanogr 55:2502–2514. doi:10.1016/j.dsr2.2008.06.009

    Article  CAS  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Gibbs MM, Andrew NL, Norkko J, Schwarz AM (2007) Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88:2810–2820. doi:10.1890/06-1396.1

    Article  CAS  PubMed  Google Scholar 

  • Nyssen F, Brey T, Lepoint G, Bouquegneau JM, De Broyer C, Dauby P (2002) A stable isotope approach to the eastern Weddell Sea trophic web: focus on benthic amphipods. Polar Biol 25:280–287. doi:10.1007/s00300-001-0340-0

    Google Scholar 

  • Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6:871–880. doi:10.5194/tc-6-871-2012

    Article  Google Scholar 

  • Plante CJ, Jumars PA, Baross JA (1990) Digestive associations between marine detritivores and bacteria. Annu Rev Ecol Syst 21:93–127. doi:10.1146/annurev.es.21.110190.000521

    Article  Google Scholar 

  • Rau GH, Sullivan CW, Gordon LI (1991) δ13C and δ15N variations in Weddell Sea particulate organic matter. Mar Chem 35:355–369. doi:10.1016/S0304-4203(09)90028-7

    Article  CAS  Google Scholar 

  • Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol. doi:10.1007/BF00238457

    Google Scholar 

  • Saucède T, Mooi R, David B (2006) Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea). Geol Mag 144:333–359. doi:10.1017/S0016756806003001

    Article  Google Scholar 

  • Smith CR, Mincks S, DeMaster DJ (2008) The FOODBANCS project: introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep Sea Res Part II Top Stud Oceanogr 55:2404–2414. doi:10.1016/j.dsr2.2008.06.001

    Article  CAS  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294. doi:10.1002/joc.1130

    Article  Google Scholar 

  • Veit-Köhler G, Guilini K, Peeken I, Quillfeldt P, Mayr C (2013) Carbon and nitrogen stable isotope signatures of deep-sea meiofauna follow oceanographical gradients across the Southern Ocean. Prog Oceanogr 110:69–79. doi:10.1016/j.pocean.2013.01.001

    Article  Google Scholar 

  • Wangensteen OS, Turon X, García-Cisneros A, Recasens M, Romero J, Palacín C (2011) A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Mar Ecol Prog Ser 441:117–128. doi:10.3354/meps09359

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. Dr. Julian Gutt (Alfred Wegener Institute, Bremerhaven, Germany) for his invitation to participate to the ANT-XXIX/3 cruise and the crew of RV Polarstern for their help during sample collection. Comments from two anonymous reviewers, from Special Issue Guest Editor and from Editor-in-Chief, helped us to improve the quality of this manuscript. Loïc N. Michel is a Belgian Science Policy Office (BELSPO) postdoctoral fellow. Philippe Dubois is a Belgian Fund for Scientific Research (F.R.S-FNRS) research director and Gilles Lepoint is a F.R.S.-FNRS research associate. Chantal De Ridder and Philippe Dubois were supported by F.R.S-FNRS “short stay abroad” travel grants (Grants No. 2013/V3/5/034 and 2013/V3/5/035). This is Contribution No. 10 to the vERSO Project (www.versoproject.be), funded by the Belgian Science Policy Office (BELSPO, Contract No. BR/132/A1/vERSO). This paper is MARE Publication No. 317.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc N. Michel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

This article belongs to the special issue on “High environmental variability and steep biological gradients in the waters off the northern Antarctic Peninsula”, coordinated by Julian Gutt, Bruno David and Enrique Isla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, L.N., David, B., Dubois, P. et al. Trophic plasticity of Antarctic echinoids under contrasted environmental conditions. Polar Biol 39, 913–923 (2016). https://doi.org/10.1007/s00300-015-1873-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1873-y

Keywords

Navigation