Skip to main content
Log in

Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The almost complete isolation of Antarctica after the intensification the Antarctic circumpolar current (ACC) during the middle-Miocene has been challenged by recent molecular data showing the existence of allelic exchange across the ACC. For organisms present on both sides of the ACC, two hypotheses have then been discussed to explain the origin of the Antarctic populations: (1) They correspond to recent immigrants from adjacent continents, or (2) they have evolved in situ and have survived the dramatic effects of the last Quaternary glaciations in this region. The red algae Gigartina skottsbergii presents a disjoint distribution and is reported in both Antarctica and southern South America, a distribution pattern that largely exceeds its dispersal capacity. Mitochondrial sequences of the intergenic region Cox2-3 (n = 233) and partial chloroplastic RuBisCo large subunit gene (n = 26) sequences were obtained for individuals from the Chilean sub-Antarctic ecoregion and Antarctic Peninsula localities. The results strongly support the persistence of populations on each side of the Drake Passage during glacial periods and the existence of dispersal barrier due to the ACC. On both sides of the ACC, the last Quaternary glaciations have induced strong bottlenecks that were followed by rapid colonization events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre ML, Richiano S, Donato M, Farinati EA (2013) Tegula atra (Lesson, 1830) (Mollusca, Gastropoda) in the marine Quaternary of Patagonia (Argentina, SW Atlantic): Biostratigraphical tool and palaeoclimate-palaeoceanographical signal. Quat Int 305:163–187

    Article  Google Scholar 

  • Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27:520–528

    Article  PubMed  Google Scholar 

  • Allcock AL, Barratt I, Eleaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell JM (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res II 58:242–249

    Article  Google Scholar 

  • Andreakis N, Proccacini G, Maggs C, Kooistra WHCF (2007) Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Mol Ecol 16:2285–2299

    Article  CAS  PubMed  Google Scholar 

  • Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Siebel BA (2007) Climate change and invasibility of the Antarctic Benthos. Annu Rev Ecol Evol Syst 38:129–154

    Article  Google Scholar 

  • Avila M, Candia A, Nunez M, Romo H (1999) Reproductive biology of Gigartina skottsbergii (Gigartinaceae, Rhodophyta) from Chile. Hydrobiologia 399:149–157

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535

    Article  Google Scholar 

  • Bortolotto E, Bucklin A, Mezzavilla M, Zane L, Patarnello T (2011) Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet 12:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandt A, Linse K, Mühlenhardt-Siegel U (1999) Biogeography of Crustacea and Mollusca of the Magellan and Antarctic regions. Sci Mar 63:383–389

    Google Scholar 

  • Buschmann AH, Correa JA, Westermeier R (1999) Recent advances in the understanding of the biological basis for Gigartina skottsbergii Rhodophyta cultivation in Chile. Hydrobiologia 398(399):427–434

    Article  Google Scholar 

  • Clarke A, Crame JA (1989) The origin of the Southern Oceanmarine fauna. Geol Soc Lond Spec Publ 47(1):253–268

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114

    Google Scholar 

  • Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? Trends Ecol Evol 20:1–3

    Article  PubMed  Google Scholar 

  • Dalziel IWD, Lawver LA, Norton IO, Gahagan LM (2013) The Scotia Arc: genesis, evolution, global significance. Ann Rev Earth Planet Sci 41:767–793

    Article  CAS  Google Scholar 

  • Destombe C, Valero M, Guillemin M-L (2010) Delineation of two sibling red algal species, Gracilaria gracilis and Gracilaria dura (Gracilariales, Rhodophyta), using multiple DNA markers: resurrection of the species G. dura previously described in the Northern Atlantic 200 years ago. J Phycol 46:720–727

    Article  CAS  Google Scholar 

  • Diaz A, González-Wevar CA, Maturana C, Palma AT, Poulin E, Gerard K (2012) Restricted geographic distribution and low genetic diversity of the brooding sea urchin Abatus agassizii (Spatangoidea: Schizasteridae) in the South Shetland Islands: A bridgehead population before the spread to the northern Antarctic Peninsula? Rev Chil Hist Nat 85:457–468

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egea R, Casillas S, Barbadilla A (2008) Standard and generalized McDonald–Kreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res 36(suppl 2):W157–W162

    Article  Google Scholar 

  • Excoffier L, Lisher H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:56

    Article  Google Scholar 

  • Excoffier E, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351

    Article  PubMed  Google Scholar 

  • Faugeron S, Valero M, Destombe C, Martínez EA, Correa JA (2001) Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga Mazzaella laminarioides (Gigartinales, Rhodophyta). J Phycol 37:705–716

    Article  CAS  Google Scholar 

  • Faugeron S, Martinez EA, Correa JA, Cardenas L (2004) Reduced genetic diversity and increased population differentiation in peripheral and overharvested populations of Gigartina skottsbergii (Rhodophyta, Gigartinales) in southern Chile. J Phycol 40:454–462

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative methods. Am Nat 125:1–15

    Article  Google Scholar 

  • Fraser CI, Thiel M, Spencer HG, Waters JM (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:12

    Article  Google Scholar 

  • Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471

    Article  PubMed  Google Scholar 

  • Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR, Waters JM (2013) Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. Plos One 8:7

    Google Scholar 

  • Fredericq S, Lopez-Bautista J (2002) Characterization and phylogenetic position of the red alga Besa papillaeformis Setchell: an example of progenetic heterochrony? Constancea 83:1–12

    Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gavio B, Fredericq S (2002) Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the nonnative species in the Atlantic known as Grateloupia doryphora. Eur J Phycol 37:349–359

    Article  Google Scholar 

  • González-Wevar CA, Nakano T, Cañete JI, Poulin E (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phy Evol 56:115–124

    Article  Google Scholar 

  • González-Wevar CA, Diaz A, Gerard K, Cañete JL, Poulin E (2012a) Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Rev Chil Hist Nat 85:445–456

    Article  Google Scholar 

  • González-Wevar CA, Hune M, Cañete JI, Mansilla A, Nakano T, Poulin E (2012b) Towards a model of postglacial biogeography in shallow marine species along the Patagonian Province: lessons from the limpet Nacella magellanica (Gmelin, 1791). BMC Evol Biol 12:1

    Article  Google Scholar 

  • González-Wevar CA, Saucède T, Morlay SA, Chown SL, Poulin E (2013) Extinction and recolonization of maritime Antarctica in the limpet Nacella concinna (Strebel, 1908) during the last glacial cycle: toward a model of Quaternary biogeography in shallow Antarctic invertebrates. Mol Ecol 22:5221–5236

    Article  PubMed  Google Scholar 

  • Haye PA, Varela AI, Thiel M (2012) Genetic signatures of rafting dispersal in algal-dwelling brooders Limnoria spp. (Isopoda) along the SE Pacific (Chile). Mar Ecol Prog Ser 455:111–122

    Article  Google Scholar 

  • Hemery LG, Eléaume M, Roussel V, Améziane N, Gallut C, Steinke D, Cruaud C, Couloux A, Wilson NG (2012) Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol Ecol 21:2502–2518

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Kantun JJ, Riosmena-Rodriguez R, Adey WH, Rind F (2014) Analysis of the Cox 2-3 spacer region for population diversity and taxonomic implications in rhodolith-forming species (Rhodophyta: Corallinales). Phytotaxa 190:331–354

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Ho S, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101

    Article  PubMed  Google Scholar 

  • Hommersand MH, Fredericq S (2003) Biogeography of the marine red algae of the South African West Coast: a molecular approach. In: Chapman ARO, Anderson RJ, Vreeland VJ, Davison IR (eds) Proceedings of the XVIIth international seaweed symposium. Oxford University Press, Oxford

    Google Scholar 

  • Hommersand MH, Fredericq S, Freshwater DW (1994) Phylogenetic systematics and biogeography of the Gigartinaceae (Gigartinales, Rhodophyta) based on sequence analysis of rbcL. Bot Mar 37:193–203

    Article  Google Scholar 

  • Hommersand MH, Fredericq S, Wilson Freshwater D, Hughey J (1999) Recent developments in the systematics of the Gigartinaceae (Gigartinales, Rhodophyta) based on rbcL sequence analysis and morphological evidence. Phycol Res 47:139–151

    Article  Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52:509–534

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hulton NRJ, Sugden DE, Payne A, Clapperton CM (1994) Glacier modeling and the climate of Patagonia during the last glacial maximum. Quat Res 42:1–19

    Article  Google Scholar 

  • Hulton NRJ, Purves RS, McCulloch RD, Sugden DE, Bentley MJ (2002) The last glacial maximum and deglaciation in southern South America. Quat Sci Rev 21:233–241

    Article  Google Scholar 

  • Jakob SS, Martinez-Meyer H, Blattner FR (2009) Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in Southern Patagonia without genetic or spatial restriction. Mol Biol Evol 26:907–923

    Article  CAS  PubMed  Google Scholar 

  • Janosik AM, Mahon AR, Halanych KM (2011) Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae; Asteroidea). Polar Biol 34:575–586

    Article  Google Scholar 

  • Jobb G, Von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamiya M, Zuccarello GC, West JA (2004) Phylogeography of Calaglossa leprieurii and related species (Delesseriaceae, Rhodophyta) based on the rbcL gene sequences. Jpn J Phycol 52:147–151

    Google Scholar 

  • Krabbe K, Leese F, Mayer C, Tollrian R, Held C (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292

    Article  Google Scholar 

  • Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    Article  CAS  PubMed  Google Scholar 

  • Kussakin OG (1973) Peculiarities of the geographical and vertical distribution of marine isopods and the problem of deep-sea fauna origin. Mar Biol 23:19–34

    Article  Google Scholar 

  • Lawver LA, Gahagan LM (1998) Opening of drake passage and its impact on cenozoic ocean circulation. Oxford Monogr Geol Geophys 39:212–226

    Google Scholar 

  • Linse K, Griffiths HJ, Barnes DKA, Clarke A (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep Sea Res II 53:985–1008

    Article  Google Scholar 

  • Mahon AR, Thornhill DJ, Norenburg JL, Halanych KM (2010) DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory. Polar Biol 33:193–202

    Article  Google Scholar 

  • McCarthy C (1997) Chromas v1.4 computer package. Griffith University, Australia

  • McIvor L, Maggs CA, Provan J, Stanhope MJ (2001) rbcL sequences reveal multiple cryptic introductions of the Japanese red alga Polysiphonia harveyi. Mol Ecol 10:911–919

    Article  CAS  PubMed  Google Scholar 

  • Moffat C, Beardsley RC, Owen B, van Lipzig N (2008) A first description of the Antarctic Peninsula Coastal Current. Deep Sea Res II 55:277–293

    Article  Google Scholar 

  • Montecinos A, Broitman BR, Faugeron S, Haye PA, Tellier F, Guillemin ML (2012) Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific. BMC Evol Biol 12:17

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5260–5273

    Article  Google Scholar 

  • Nikula R, Fraser CI, Spencer HG, Waters JM (2010) Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar Ecol Prog Ser 405:221–230

    Article  CAS  Google Scholar 

  • Piriz ML (1996) Phenology of a Gigartina skottsbergii Setchell et Gardner population in Chubut Province (Argentina). Bot Mar 39:311–316

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST; testing the model of DNA substitution. Bioinform Appl Note 14:817–818

    Article  CAS  Google Scholar 

  • Poulin E, González-Wevar C, Diaz A, Gerard K, Hune M (2014) Divergence between Antarctic and South American marine invertebrates: What molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Global Planet Change 123:392–399

    Article  Google Scholar 

  • Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23:564–571

    Article  PubMed  Google Scholar 

  • Ramirez ME, Santelices B (1991) Catalogo de algas marinas bentónicas de la costa temperada del Pacífico de Sudamérica. Monogr Biol 5:247–252

    Google Scholar 

  • Raupach MJ, Thatje S, Dambach J, Rehm P, Misof B, Leese F (2010) Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar Biol 157:1783–1797

    Article  CAS  Google Scholar 

  • Roger AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    Google Scholar 

  • Rogers AD, Murphy EJ, Johnston NM, Clarke A (2007) Introduction. Antarctic ecology: from genes to ecosystems. Part 2. evolution, diversity and functional ecology. Phil Trans R Soc B 362:2187–2189

    Article  PubMed Central  PubMed  Google Scholar 

  • Santelices B (1988) Algas marínas de Chile. Distribución, ecología, utilización y diversidad. Ediciones Universidad Católica de Chile, Santiago, Chile

  • Silva PC (1996) Index Nominum Algarum. University Herbarium, University of California, Berkeley. http://ucjeps.berkeley.edu/INA.html

  • Stupnikova AN, Molodtsova TN, Mugue NS, Neretina TV (2013) Genetic variability of the Metridia lucens complex (Copepoda) in the Southern Ocean. J Mar Syst 128:175–184

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tavares M, de Melo GAS (2004) Discovery of the first known benthic invasive species in the Southern Ocean: the North Atlantic spider crab Hyas araneus found in the Antarctic Peninsula. Antarct Sci 16:129–131

    Article  Google Scholar 

  • Thatje S, Fuentes V (2003) First record of anomuran and brachyuran larvae (Crustacea: Decapoda) from Antarctic waters. Polar Biol 26:279–282

    Google Scholar 

  • Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Article  PubMed  Google Scholar 

  • Thatje S, Hillenbrand CD, Mackensen A, Larter R (2008) Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89:682–692

    Article  PubMed  Google Scholar 

  • Thorpe SE, Heywood KJ, Stevens DP, Brandon MA (2004) Tracking passive drifters in a high resolution ocean model: implications for interannual variability of larval krill transport to South Georgia. Deep Sea Res I 51:909–920

    Article  Google Scholar 

  • Valdovinos C, Navarrete SA, Marquet PA (2003) Mollusk species diversity in the Southeastern Pacific: Why are there more species towards the pole? Ecography 26:139–144

    Article  Google Scholar 

  • Vianna JA, Medina-Vogel G, Chehebar C, Sielfeld W, Olavarria C, Faugeron S (2011) Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia? BMC Evol Biol 11:12

    Article  Google Scholar 

  • Weis A, Meyer R, Dietz L, Domel JS, Leese F, Melzer RR (2014) Pallenopsis patagonica (Hoek, 1881)—a species complex revealed by morphology and DNA barcoding, with description of a new species of Pallenopsis Wilson, 1881. Zool J Linn Soc 170:110–131

    Article  Google Scholar 

  • Westermeier R, Aguilar A, Sigel J, Quintanilla J, Morales J (1999) Biological basis for the management of Gigartina skottsbergii (Gigartinales, Rhodophyta) in southern Chile. Hydrobiologia 399:137–147

    Article  Google Scholar 

  • Westermeier R, Patino DJ, Murua P, Quintanilla JC, Correa J, Buschmann AH, Barros I (2012) A pilot-scale study of the vegetative propagation and suspended cultivation of the carrageenophyte alga Gigartina skottsbergii in southern Chile. J Appl Phycol 24:11–20

    Article  Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. In: Wägele JW (ed) Synopsis of the Antarctic Benthos. ARG Gantner, Ruggell, Liechtenstein

    Google Scholar 

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar. 52:491–507

    Article  Google Scholar 

  • Zemlak TS, Walde SJ, Habit EM, Ruzzante DE (2011) Climate-induced changes to the ancestral population size of two Patagonian galaxiids: the influence of glacial cycling. Mol Ecol 20:5280–5294

    Article  PubMed  Google Scholar 

  • Zuccarello GC, Burger G, West JA, King ARJ (1999) A mitochondrial marker for red algal intraspecific relationships. Mol Ecol 8:1443–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Instituto Antártico Chileno (INACH) Project T_16-11. EB is granted by a postdoctoral fellowship from the Project “Genomics Applied To Genetic Resources” cofinanced by North Portugal Regional Operational Programme 2007/2013 (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). Additional support came from the International Research Network “Diversity, Evolution and Biotechnology of Marine Algae” (GDRI No 0803) and from the CONICYT FONDECYT/REGULAR N 1140940. The authors thank P. Brunning, J. L. Kappes, T. Heran, Y. Henriquez, J. Ojeda and L. Vallejos for their help in the field and M. E. Ramírez for her help in identification of vouchers from Antarctica and E. Giles for English correction. The authors would also like to thank C. González-Wevar and four anonymous reviewers for their critical comments and valuable suggestions, which helped to improve this manuscript. We also thank the Chilean Navy (especially the captain and crew of the ships Almirante Oscar Viel and Lautaro), the staff from the Chilean Army in the O’Higgins base and the Air Force of Chile (FACh) for the logistic support of our fieldwork in sub-Antarctica and Antarctica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Guillemin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 47 kb)

Supplementary material 2 (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billard, E., Reyes, J., Mansilla, A. et al. Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent. Polar Biol 38, 2021–2034 (2015). https://doi.org/10.1007/s00300-015-1762-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1762-4

Keywords

Navigation