Skip to main content

Advertisement

Log in

Decreased phenolic defence in dwarf birch (Betula nana) after warming in subarctic tundra

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Dwarf birch (Betula nana L.), a dominant deciduous dwarf shrub in many tundra ecosystems, is predicted to increase substantially in abundance due to climate warming. Potential warming-induced changes in the concentrations of phenolic compounds in B. nana leaves could influence the susceptibility of B. nana to environmental stresses; however, only a few studies have investigated the effects of climate warming on the phenolic defence in B. nana. We analysed the responses of phenolic concentrations and amounts in B. nana leaves to factorial treatments of warming and fertilization for 2 years in a subarctic tundra heath. Warming induced a strong decrease in total phenolics, including both flavonols (i.e. quercetin and myricetin derivatives, important defence compounds against oxidative stress) and hydrolysable tannins (HTs, important defence compounds against herbivory). Fertilization exerted weaker effects on phenolic concentrations while significantly increasing the leaf area. Our data indicate that climate warming may decrease the level of phenolic defence in B. nana leaves. Given the important role of these compounds in the plant defence, this phenomenon could potentially increase the susceptibility of B. nana to biotic stresses such as herbivory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abràmoff MD, Magalhäes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 7:36–43

    Google Scholar 

  • Anttila U, Julkunen-Tiitto R, Rousi M, Yang S, Rantala MJ, Ruuhola T (2010) Effects of elevated ultraviolet-B radiation on a plant–herbivore interaction. Oecologia 164:163–175

    Article  PubMed  Google Scholar 

  • Ayres MP, Clausen TP, MacLean SF, Redman AM, Reichardt PB (1997) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712

    Article  Google Scholar 

  • Barbehenn RV, Jones CP, Hagerman AE, Karonen M, Salminen J-P (2006) Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars. J Chem Ecol 32:2253–2267

    Article  CAS  PubMed  Google Scholar 

  • Bokhorst S, Huiskes A, Coney P, Sinclair BJ, Lebouvier M, Van de Vijver B, Wall DH (2011) Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biol 34:1421–1435

    Article  Google Scholar 

  • Bret-Harte MS, Shaver GR, Zoerner JP, Johnstone JF, Wagner JL, Chavez AS, Gunkelman RFIV, Lippert SC, Laundre JA (2001) Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82:18–32

    Article  Google Scholar 

  • Bret-Harte MS, Mack MC, Goldsmith GR, Sloan DB, DeMarco J, Shaver GR, Ray PM, Biesinger Z, Chapin FS III (2008) Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra. J Ecol 96:713–726

    Article  PubMed Central  PubMed  Google Scholar 

  • Bryant JP, Provenza FD, Pastor J, Reichardt PB, Clausen TP, du Toit JT (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22:431–446

    Article  Google Scholar 

  • Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367

    Article  Google Scholar 

  • Chapin FS, Shaver GR (1985) Individualistic growth response to tundra plant species to environmental manipulations in the field. Ecology 66:564–576

    Article  Google Scholar 

  • Close DC, McArthur C (2002) Rethinking the role of many plant phenolics: protection from photodamage not herbivores? Oikos 99:166–172

    Article  CAS  Google Scholar 

  • Coq S, Souquet J-M, Meudec E, Cheynier V, Hättenschwiler S (2010) Interspecific variation in leaf litter tannin drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091

    Article  PubMed  Google Scholar 

  • Crete M, Doucet GJ (1998) Persistent suppression in dwarf birch after release from heavy summer browsing by caribou. Arct Alp Res 30:126–132

    Article  Google Scholar 

  • Elmendorf S, Henry GHR, Hollister RD et al (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175

    Article  PubMed  Google Scholar 

  • Graglia E, Jonasson S, Michelsen A, Schmidt IK, Havström M, Gustavsson L (2001a) Effects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatments. Ecography 24:5–12

    Article  Google Scholar 

  • Graglia E, Julkunen-Tiitto R, Shaver G, Schmidt IK, Jonasson S, Michelsen A (2001b) Environmental control and intersite variations of phenolics in Betula nana in tundra ecosystems. New Phytol 151:227–236

    Article  CAS  Google Scholar 

  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95

    Article  Google Scholar 

  • Hansen AH, Jonasson S, Michelsen A, Julkunen-Tiitto R (2006) Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic–alpine deciduous and evergreen dwarf shrubs. Oecologia 147:1–11

    Article  PubMed  Google Scholar 

  • Hollister RD, Webber PJ (2000) Biotic validation of small open-top chambers in a tundra ecosystem. Glob Change Biol 6:835–842

    Article  Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264

    Article  PubMed  Google Scholar 

  • Jonasson S, Bryant JP, Chapin FS III, Anderson M (1986) Plant phenols and nutrients in relation to variations in climate and rodent grazing. Am Nat 128:394–408

    Article  CAS  Google Scholar 

  • Kaarlejärvi E, Baxter R, Hofgaard A, Hytteborn H, Khitun O, Molau U, Sjögersten S, Wookey P, Olofsson J (2012) Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest-tundra ecotone. Ecosystems 15:1219–1233

    Article  Google Scholar 

  • Kaukonen M, Ruotsalainen AL, Wäli P, Männistö MK, Setälä H, Saravesi K, Huusko K, Markkola AM (2013) Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94:267–272

    Article  PubMed  Google Scholar 

  • Keski-Saari S, Pusenius J, Julkunen-Tiitto R (2005) Phenolic compounds in seedlings of Betula pubescens and B. pendula are affected by enhanced UVB radiation and different nitrogen regimens during early ontogeny. Glob Change Biol 11:1180–1194

    Article  Google Scholar 

  • Koricheva J (1999) Interpreting phenotypic variation in plant allelochemistry: problems with the use of concentrations. Oecologia 119:467–473

    Article  Google Scholar 

  • Koricheva J, Larsson S, Haukioja E, Keinänen M (1998) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226

    Article  CAS  Google Scholar 

  • Kostina E, Wulff A, Julkunen-Tiitto R (2001) Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees 15:483–491

    Article  CAS  Google Scholar 

  • Kumpula J, Stark S, Holand O (2011) Seasonal grazing effects by semi-domesticated reindeer on subarctic mountain birch forests. Polar Biol 34:441–453

    Article  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  CAS  PubMed  Google Scholar 

  • Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high latitude ecosystems. Glob Change Biol 3:20–31

    Article  Google Scholar 

  • Martz F, Sutinen M-L, Derome K, Wingsle G, Julkunen-Tiitto R, Turunen M (2007) Effects of ultraviolet (UV) exclusion on the seasonal concentration of photosynthetic and UV-screening pigments in Scots pine needles. Glob Change Biol 13:252–265

    Article  Google Scholar 

  • Martz F, Jaakola L, Julkunen-Tiitto R, Stark S (2010) Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in northern Europe following foliar development and along environmental gradients. J Chem Ecol 36:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Martz F, Turunen M, Julkunen-Tiitto R, Suokanerva H, Sutinen M-L (2011) Different responses of two reindeer forage plants to enhanced UV-B radiation: modification of the phenolic composition. Polar Biol 34:411–420

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker JM, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509

    Article  Google Scholar 

  • Nybakken L, Klanderud K, Totland O (2008) Simulated environmental change has contrasting effects on defensive compound concentrations in three alpine plant species. Arct Antarct Alp Res 40:709–715

    Article  Google Scholar 

  • Nybakken L, Sandvik SM, Klanderud K (2011) Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine plants and lichens. Environ Exp Bot 72:368–376

    Article  CAS  Google Scholar 

  • Oksanen L, Virtanen R (1995) Topographic, altitudinal and regional patterns in continental and suboceanic heath vegetation of northern Fennoscandia. Acta Botanica Fennica 153:1–80

    Google Scholar 

  • Ossipov V, Haukioja E, Ossipova S, Hanhimäki S, Pihlaja K (2001) Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem Syst Ecol 29:223–240

    Article  CAS  PubMed  Google Scholar 

  • Ossipov V, Klemola T, Ruohomäki K, Salminen J-P (2014) Effects of three years’ increase in density of the geometric Epirrita autumnata on the change in metabolome of mountain birch trees (Betula pubescens ssp. czerepanovii). Chemoecology 24:201–214

    Article  CAS  Google Scholar 

  • Persson I-L, Julkunen-Tiitto R, Bergström R, Wallgren M, Suominen O, Danell K (2012) Simulated moose (Alces alces L.) browsing increases accumulation of secondary metabolites in bilberry (Vaccinium myrtillus L.) along gradients of habitat productivity and solar radiation. J Chem Ecol 38:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Porter LJ, Hrstich LC, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidins. Phytochemistry 25:223–230

    Article  CAS  Google Scholar 

  • Randriamanana TR, Nybakken L, Lavola A, Aphalo PJ, Nissinen K, Julkunen-Tiitto R (2014) Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories. Tree Physiol 34:471–487

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Riipi M, Ossipov V, Lempa K, Haukioja E, Koricheva J, Ossipova S, Pihlaja K (2002) Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics? Oecologia 130:380–390

    Article  Google Scholar 

  • Riipi M, Lempa K, Haukioja E, Ossipov V, Pihlaja K (2005) Effects of simulated winter browsing on mountain birch foliar chemistry and on the performance of insect herbivores. Oikos 111:221–234

    Article  Google Scholar 

  • Ruohomäki K, Chapin FS III, Haukioja E, Neuvonen S, Suomela J (1996) Delayed inducible resistance in mountain birch in response to fertilization and shade. Ecology 77:2302–2311

    Article  Google Scholar 

  • Ruuhola T, Yang S (2006) Wound-induced oxidative responses in mountain birch leaves. Ann Bot 97:29–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruuhola T, Salminen J-P, Haviola S, Yang S, Rantala MJ (2007) Immunological memory of mountain birches: effects of phenolics on performance of the autumnal moth depend on herbivory history of trees. J Chem Ecol 33:1160–1176

    Article  CAS  PubMed  Google Scholar 

  • Ruuhola T, Salminen P, Salminen JP, Ossipov V (2013) Ellagitannins: defences of Betula nana against Epirrita autumnata folivory? Agric For Entomol 15:187–196

    Article  Google Scholar 

  • Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  • Soininen EM, Zinger L, Gielly L, Bellemain E, Bråthen KA, Brochmann C, Epp ES, Gussarova G, Hassel K, Henden J-A, Killengreen ST, Rämä T, Stenøien HK, Yoccoz NG, Ims RA (2013) Shedding new light on the diet of Norwegian lemmings: DNA metabarcoding of stomach content. Polar Biol 36:1069–1076

    Article  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defence hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Stark S, Julkunen-Tiitto R, Kumpula J (2007) Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil nutrient cycling. Oecologia 151:486–498

    Article  PubMed  Google Scholar 

  • Stark S, Julkunen-Tiitto R, Holappa E, Mikkola K, Nikula A (2008) Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude. J Chem Ecol 34:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Sundqvist MK, Wardle DA, Olofsson E, Giesler R, Gundale MJ (2012) Chemical properties of plant litter in response to elevation: subarctic vegetation challenges phenolic allocation theories. Funct Ecol 26:1090–1099

    Article  Google Scholar 

  • Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 163(3 Suppl):S93–S102

    Article  Google Scholar 

  • Torp M, Olofsson J, Witzell J, Baxter R (2010a) Snow-induced changes in dwarf shrub chemistry increase moth larval growth rate and level of herbivory. Polar Biol 33:693–702

    Article  Google Scholar 

  • Torp M, Witzell J, Baxter R, Olofsson J (2010b) The effect of snow on plant chemistry and invertebrate herbivory: experimental manipulations along a natural snow gradient. Ecosystems 13:741–751

    Article  CAS  Google Scholar 

  • Turunen M, Soppela P, Kinnunen H, Sutinen M-L, Martz F (2009) Does climate change influence the availability and quality of reindeer forage plants? Polar Biol 32:813–832

    Article  Google Scholar 

  • Väisänen M, Martz F, Kaarlejärvi E, Julkunen-Tiitto R, Stark S (2013) Phenolic responses of mountain crowberry (Empetrum nigrum ssp. hermaphroditum) to global climate change are compound specific and depend on grazing by reindeer (Rangifer tarandus). J Chem Ecol 39:1390–1399

    Article  PubMed  Google Scholar 

  • Väisänen M, Ylänne H, Kaarlejärvi E, Sjögersten S, Olofsson J, Crout N, Stark S (2014) Consequences of warming on tundra carbon balance determined by reindeer grazing history. Nat Clim Change 4:384–388

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. PNAS 103:1342–1346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zamin TJ, Grogan P (2012) Birch shrub growth in the low arctic: the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion. Environ Res Lett 7:034027

    Article  Google Scholar 

Download references

Acknowledgments

We thank Aarno Niva and Sirkka Aakkonen for helping with field manipulations and Minna Männistö and Lars Ganzert for helping with leaf sampling. We are also grateful to Elina Kaarlejärvi, Sarita Keski-Saari, and three anonymous reviewers for helpful comments on the manuscript. This investigation was funded by Academy of Finland (decision number 218121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, S., Väisänen, M., Ylänne, H. et al. Decreased phenolic defence in dwarf birch (Betula nana) after warming in subarctic tundra. Polar Biol 38, 1993–2005 (2015). https://doi.org/10.1007/s00300-015-1758-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1758-0

Keywords

Navigation