Skip to main content
Log in

Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)?

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Deschampsia antarctica and Colobanthus quitensis are usually covered by snow from April to November. It is unknown whether the leaves survive ice encasement. This study proposes that day length influences sugar distribution in C. quitensis and that sugar accumulation favors re-growths after an ice encasement period. The objectives of this work were: (1) to study the effect of day length and low temperature on sugar distribution in organs of C. quitensis and (2) to study the survival and recovery of D. antarctica and C. quitensis after a period of ice encasement. Extremely short day length (SD) (8/16 h) and long day length (LD) (21/3 h) was used, medium (MD) (16/8 h) corresponding at control day length. Also two temperatures: 4°C (cold acclimated) and 15°C (control) were evaluated. Both factors: day length and cold acclimation significantly affected sugar distribution in C. quitensis. Both species presented a high rate of survival after ice encasement. D. antarctica conserved most of their leaves green, while C. quitensis presented dead leaves and new shoots in plants from cold acclimated under SD. Only in D. antarctica the number of green leaves after ice encasement was positively correlated with sugar content in underground organs. The high sugar content in green leaves of both species suggested fast activity recovery after snow melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21:6536–6544

    Article  PubMed  CAS  Google Scholar 

  • Bascuñán-Godoy L, Uribe E, Zúñiga-Feest A, Corcuera LJ, Bravo LA (2006) Low temperature regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl. by decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biol. doi:10.1007/s00300-006-0144-3

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56(414):1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Ulloa N, Zúñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    Article  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  PubMed  CAS  Google Scholar 

  • Gianoli E, Inostroza P, Zúñiga-Feest A, Reyes-Díaz M, Cavieres LA, Bravo LA, Corcuera LJ (2004) Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Cariophyllaceae) from the Andes of Central Chile and Maritime Antarctica. Arct Antarct Alp Res 36:484–489

    Article  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  PubMed  CAS  Google Scholar 

  • Grobe CW, Ruhland CT, Day TA (1997) A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperatures. Arct Antarct Alp Res 29(2):217–221

    Google Scholar 

  • Gudleifsson BE (1993) Metabolic and cellular impact of ice encasement on herbage plants. In: Jackson MB, Black CR (eds) Interacting stresses on plants in a changing climate. Springer, Berlin, pp 407–423

    Google Scholar 

  • Gudleifsson BE (1997) Survival and metabolite accumulation by seedlings and mature plants of timothy grass during ice encasement. Ann Bot 79(suppl A):93–96

    CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, London, p 545

    Google Scholar 

  • Lee KY, Nurok D, Zlatkis A (1979) Determination of glucose, fructose and sucrose in molasses by high-performance thin-layer chromatography. J Chromatogr 174:187–193

    Article  CAS  Google Scholar 

  • Lewis Smith RI (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–328

    Article  Google Scholar 

  • Lewis Smith RI (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 234–239

    Google Scholar 

  • Lineberger DR, Steponkus PL (1980) Cryoprotection by glucose, sucrose, and raffinose to chloroplast thylakoids. Plant Physiol 65:298–304

    Article  PubMed  CAS  Google Scholar 

  • Mandre M, Tullus H, Klõšeiko J (2002) Partitioning of carbohydrates and biomass of needles in scots pine canopy. Z Naturforsch 57:296–302

    CAS  Google Scholar 

  • Montiel PO (2000) Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryoletters 21:83–90

    PubMed  Google Scholar 

  • Newsted WJ, Chibbar RN, Georges F (1991) Effect of low temperature stress on the expression on sucrose synthase in spring and winter wheat plants. Development of monoclonal antibody against wheat germ sucrose synthase. Biochem Cell Biol 69:36–41

    Article  PubMed  CAS  Google Scholar 

  • Olave-Concha N, Ruiz-Lara S, Muñoz X, Bravo LA, Corcuera LJ (2004) Accumulation of dehydrin transcripts and proteins in response to abiotic stresses in Deschampsia antarctica. Antarct Sci 16:75–184

    Article  Google Scholar 

  • Piotrowicz-Cieslak AI, Gielwanowska I, Bochenek A, Loro P, Gorecki RJ (2005) Carbohydrates in Colobanthus quitensis and Deschampsia antarctica. Acta Soc Bot Pol 74(3):209–217

    CAS  Google Scholar 

  • Pomeroy MK, Andrews CJ (1983) Fooding and ice encasemenet damage to winter wheat. In: Fowler DB, Gusta LV, Slinkard AE, Hobin BA (eds) New frontiers in winter wheat production. Western Canada Winter Wheat Conference 1983, pp 39–56

  • Roe JH (1934) A colorimetric method for the determination of fructose in blood and urine. J Biol Chem 107:15–22

    CAS  Google Scholar 

  • Solhaug KA, Aares E (1994) Remobilization of fructans in Phippsia algida during rapid inflorescence development. Physiol Plant 91:219–225

    Article  CAS  Google Scholar 

  • Steele JM, Ratliff RD, Ritenour GL (1984) Seasonal variation in total non-structural carbohydrate levels in Nebraska Sedge. J Range Manage 37:465–467

    Article  Google Scholar 

  • Strauss G, Hauser H (1986) Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci USA 83:2422–2426

    Article  PubMed  CAS  Google Scholar 

  • Xiong FS, Ruhland CT, Day TA (1999) Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plant 106:276–286

    Article  CAS  Google Scholar 

  • Yoshida M, Abe J, Masahisa M, Kuwabara T (1998) Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter. Physiol Plant 103:8–16

    Article  CAS  Google Scholar 

  • Zúñiga GE, Alberdi M, Corcuera LJ (1996) Non structural carbohydrates in Deschampsia antarctica Desv. From South Shethland Islands, Maritime Antarctic. Environ Exp Bot 36:393–399

    Article  Google Scholar 

  • Zúñiga-Feest A, Inostroza P, Vega M, Bravo LA, Corcuera L (2003) Sugars and enzyme activity in the grass Deschampsia antarctica. Antarct Sci 15(4):483–491

    Article  Google Scholar 

  • Zúñiga-Feest A, Ort DR, Gutierrez A, Gidekel M, Bravo LA, Corcuera LJ (2004) Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth Res 83(1):75–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Fondecyt 2000136 project for its financial support, and Instituto Chileno Antártico for the logistic and official permits for collecting plants in a special protected area. We also thank Alexis Estay and Valeria Neira for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Zúñiga-Feest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zúñiga-Feest, A., Bascuñán-Godoy, L., Reyes-Diaz, M. et al. Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)?. Polar Biol 32, 583–591 (2009). https://doi.org/10.1007/s00300-008-0553-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0553-6

Keywords

Navigation