Skip to main content
Log in

Establishing an efficient protoplast transient expression system for investigation of floral thermogenesis in aroids

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Floral thermogenesis is an important reproductive strategy for attracting pollinators. We developed essential biological tools for studying floral thermogenesis using two species of thermogenic aroids, Symplocarpus renifolius and Alocasia odora.

Abstract

Aroids contain many species with intense heat-producing abilities in their inflorescences. Several genes have been proposed to be involved in thermogenesis of these species, but biological tools for gene functional analyses are lacking. In this study, we aimed to develop a protoplast-based transient expression (PTE) system for the study of thermogenic aroids. Initially, we focused on skunk cabbage (Symplocarpus renifolius) because of its ability to produce intense as well as durable heat. In this plant, leaf protoplasts were isolated from potted and shoot tip-cultured plants with high efficiency (ca. 1.0 × 105/g fresh weight), and more than half of these protoplasts were successfully transfected. Using this PTE system, we determined the protein localization of three mitochondrial energy-dissipating proteins, SrAOX, SrUCPA, and SrNDA1, fused to green fluorescent protein (GFP). These three GFP-fused proteins were localized in MitoTracker-stained mitochondria in leaf protoplasts, although the green fluorescent particles in protoplasts expressing SrUCPA-GFP were significantly enlarged. Finally, to assess whether the PTE system established in the leaves of S. renifolius is applicable for floral tissues of thermogenic aroids, inflorescences of S. renifolius and another thermogenic aroid (Alocasia odora) were used. Although protoplasts were successfully isolated from several tissues of the inflorescences, PTE systems worked well only for the protoplasts isolated from the female parts (slightly thermogenic or nonthermogenic) of A. odora inflorescences. Our developed system has a potential to be widely used in inflorescences as well as leaves in thermogenic aroids and therefore may be a useful biological tool for investigating floral thermogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from the spathe. c Protoplasts isolated from the male (upper), sterile (middle), and female part (lower). The value in parenthesis indicates the isolation efficiency of protoplasts in each part. Few protoplasts were isolated from the appendix. d Bright-field (DIC) and fluorescent microphotographs (GFP) were collected on the Zeiss AxioImager A2 microscope equipped with appropriate filter sets

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Aoki S, Toh S, Nakamichi N, Hayashi Y, Wang Y, Suzuki T, Tsuji H, Kinoshita T (2019) Regulation of stomatal opening and histone modification by photoperiod in Arabidopsis thaliana. Sci Rep 9:10054. https://doi.org/10.1038/s41598-019-46440-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma H, Kono M (2006) Estragole (4-allylanisole) is the primary compound in volatiles emitted from the male and female cones of Cycas revoluta. J Plant Res 119:671–676

    CAS  PubMed  Google Scholar 

  • Barreto P, Okura V, Pena IA, Maia R, Maia IG, Arruda P (2015) Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves. J Exp Bot 67:301–313

    PubMed  PubMed Central  Google Scholar 

  • Barreto P, Yassitepe JECT, Wilson ZA, Arruda P (2017) Mitochondrial uncoupling protein 1 overexpression increases yield in Nicotiana tabacum under drought stress by improving source and sink metabolism. Front Plant Sci 8:1836. https://doi.org/10.3389/fpls.2017.01836

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian F, Luo Y, Li L, Pang Y, Peng Y (2021) Inflorescence development, thermogenesis and flower-visiting insect activity in Alocasia odora. Flora 279:151818. https://doi.org/10.1016/j.flora.2021.151818

    Article  Google Scholar 

  • Burris KP, Dlugosz EM, Collins AG, Stewart CN Jr, Lenaghan SC (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep 35:693–704

    CAS  PubMed  Google Scholar 

  • Cao J, Yao D, Lin F, Jiang M (2014) PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant 36:1271–1281

    CAS  Google Scholar 

  • Dahal K, Martyn GD, Alber NA, Vanlerberghe GC (2016) Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions. J Exp Bot 68:657–671

    PubMed Central  Google Scholar 

  • Dahal K, Vanlerberghe GC (2018) Growth at elevated CO2 requires acclimation of the respiratory chain to support photosynthesis. Plant Physiol 178:82–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    CAS  PubMed  Google Scholar 

  • Fiorani F, Umbach AL, Siedow JN (2005) The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol 139:1795–1805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujikawa Y, Nakanishi T, Kawakami H, Yamasaki K, Sato MH, Tsuji H, Matsuoka M, Kato N (2014) Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format. Rice 7:11. https://doi.org/10.1186/s12284-014-0011-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibernau M, Barabe D, Moisson M, Trombe A (2005) Physical constraints on temperature difference in some thermogenic aroid inflorescences. Ann Bot 96:117–125

    PubMed  PubMed Central  Google Scholar 

  • Grant NM, Miller RE, Watling JR, Robinson SA (2008) Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus during floral development. J Exp Bot 59:705–714

    CAS  PubMed  Google Scholar 

  • Hirata H, Ohnishi T, Ishida H, Tomida K, Sakai M, Hara M, Watanabe N (2012) Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. J Plant Physiol 169:444–451

    CAS  PubMed  Google Scholar 

  • Inaba T, Nagano Y, Sakakibara T, Sasaki Y (1999) Identification of a cis-regulatory element involved in phytochrome down-regulated expression of the pea small GTPase gene pra2. Plant Physiol 120:491–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito-Inaba Y, Hida Y, Ichikawa M, Kato Y, Yamashita T (2008) Characterization of the plant uncoupling protein, SrUCPA, expressed in spadix mitochondria of the thermogenic skunk cabbage. J Exp Bot 59:995–1005

    CAS  PubMed  Google Scholar 

  • Ito-Inaba Y, Hida Y, Inaba T (2009) What is critical for plant thermogenesis? Differences in mitochondrial activity and protein expression between thermogenic and non-thermogenic skunk cabbages. Planta 231:121–130

    CAS  PubMed  Google Scholar 

  • Ito-Inaba Y, Masuko-Suzuki H, Maekawa H, Watanabe M, Inaba T (2016) Characterization of two PEBP genes, SrFT and SrMFT, in thermogenic skunk cabbage (Symplocarpus renifolius). Sci Rep 6:29440. https://doi.org/10.1038/srep29440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito-Inaba Y, Sato M, Sato MP, Kurayama Y, Yamamoto H, Ohata M, Ogura Y, Hayashi T, Toyooka K, Inaba T (2019) Alternative oxidase capacity of mitochondria in microsporophylls may function in cycad thermogenesis. Plant Physiol 180:743–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakizaki Y, Moore AL, Ito K (2012) Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum. Biochem J 445:237–246

    CAS  PubMed  Google Scholar 

  • Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial MicroRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaura H, Mori M, Nishibori Y, Ohtani H (2008) A study on the mass propagation of skunk cabbages (Symplocarpus foetidus). Bull Shiga Prefect Agric Technol Promot Cent 47:43–50

    Google Scholar 

  • Kite GC, Hetterscheid WLA (2017) Phylogenetic trends in the evolution of inflorescence odours in Amorphophallus. Phytochemistry 142:126–142

    CAS  PubMed  Google Scholar 

  • Knutson RM (1974) Heat production and temperature regulation in eastern skunk cabbage. Science 186:746–747

    CAS  PubMed  Google Scholar 

  • Kumano Y, Yamaoka R (2006) Synchronization between temporal variation in heat generation, floral scents and pollinator arrival in the beetle-pollinated tropical Araceae Homalomena propinqua. Plant Species Biol 21:173–183

    Google Scholar 

  • Lin H-Y, Chen J-C, Fang S-C (2018) A protoplast transient expression system to enable molecular, cellular, and functional studies in Phalaenopsis orchids. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00843

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Li Z, Wang Y, Xing D (2014) Overexpression of alternative oxidase1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis. J Exp Bot 65:4465–4478

    CAS  PubMed  Google Scholar 

  • Marotz-Clausen G, Jürschik S, Fuchs R, Schäffler I, Sulzer P, Gibernau M, Dötterl S (2018) Incomplete synchrony of inflorescence scent and temperature patterns in Arum maculatum L. (Araceae). Phytochemistry 154:77–84

    CAS  PubMed  Google Scholar 

  • Masani MY, Noll GA, Parveez GK, Sambanthamurthi R, Prüfer D (2014) Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS ONE 9:e96831. https://doi.org/10.1371/journal.pone.0096831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeuse BJD, Raskin I (1988) Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sex Plant Reprod 1:3–15

    Google Scholar 

  • Miller RE, Grant NM, Giles L, Ribas-Carbo M, Berry JA, Watling JR, Robinson SA (2011) In the heat of the night—alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. New Phytol 189:1013–1026

    CAS  PubMed  Google Scholar 

  • Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Ann Rev Plant Biol 64:637–663

    CAS  Google Scholar 

  • Nagata T, Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20

    CAS  PubMed  Google Scholar 

  • Nanjareddy K, Arthikala M-K, Blanco L, Arellano ES, Lara M (2016) Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol 16:53. https://doi.org/10.1186/s12896-016-0283-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Z-L, Sun H, Li H, Wen J (2006) Intercontinental biogeography of subfamily Orontioideae (Symplocarpus, Lysichiton, and Orontium) of Araceae in eastern Asia and North America. Mol Phylogenetics Evol 40:155–165

    CAS  Google Scholar 

  • Oguri S, Sakamaki K, Sakamoto H, Kubota K (2019) Compositional changes of the floral scent volatile emissions from Asian skunk cabbage (Symplocarpus renifolius, Araceae) over flowering sex phases. Phytochem Anal 30:139–147

    CAS  PubMed  Google Scholar 

  • Page MT, Parry MAJ, Carmo-Silva E (2019) A high-throughput transient expression system for rice. Plant Cell Environ 42:2057–2064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren R, Gao J, Lu C, Wei Y, Jin J, Wong S-M, Zhu G, Yang F (2020) Highly efficient protoplast isolation and transient expression system for functional characterization of flowering related genes in cymbidium orchids. Int J Mol Sci 21:2264

    CAS  PubMed Central  Google Scholar 

  • Salzman S, Crook D, Crall JD, Hopkins R, Pierce NE (2020) An ancient push-pull pollination mechanism in cycads. Sci Adv 6:eaay6169. https://doi.org/10.1126/sciadv.aay6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasamoto H, Ashihara H (2014) Effect of nicotinic acid, nicotinamide and trigonelline on the proliferation of lettuce cells derived from protoplasts. Phytochem Lett 7:38–41

    CAS  Google Scholar 

  • Seymour RS (2010) Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration. Plant Cell Environ 33:1474–1485

    PubMed  Google Scholar 

  • Seymour RS, Blaylock AJ (1999) Switching off the heater: influence of ambient temperature on thermoregulation by eastern skunk cabbage Symplocarpus foetidus. J Exp Bot 50:1525–1532

    CAS  Google Scholar 

  • Seymour RS, Matthews PG (2006) The role of thermogenesis in the pollination biology of the Amazon waterlily Victoria amazonica. Ann Bot 98:1129–1135

    PubMed  PubMed Central  Google Scholar 

  • Shen Y, Meng D, McGrouther K, Zhang J, Cheng L (2017) Efficient isolation of Magnolia protoplasts and the application to subcellular localization of MdeHSF1. Plant Methods 13:44. https://doi.org/10.1186/s13007-017-0193-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi T, Toda JM, Takano TK, Yafuso M, Suwito A, Wong YS, Shang SQ, Gao JJ (2019) A review of taxonomy and flower-breeding ecology of the Colocasiomyia toshiokai species group (Diptera: Drosophilidae), with description of a new species from Indonesia. Eur J Entomol 116:341–361

    Google Scholar 

  • Shirasu M, Fujioka K, Kakishima S, Nagai S, Tomizawa Y, Tsukaya H, Murata J, Manome Y, Touhara K (2010) Chemical identity of a rotting animal-like odor emitted from the inflorescence of the Titan arum (Amorphophallus titanum). Biosci Biotech Biochem 74:2550–2554

    CAS  Google Scholar 

  • Smith AMO, Ratcliffe RG, Sweetlove LJ (2004) Activation and function of mitochondrial uncoupling protein in plants. J Biol Chem 279:51944–51952

    CAS  PubMed  Google Scholar 

  • Song J, Sorensen EL, Liang GH (1990) Direct embryogenesis from single mesophyll protoplasts in alfalfa (Medicago sativa L.). Plant Cell Rep 9:21–25

    CAS  PubMed  Google Scholar 

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Pollination: rotting smell of dead-horse arum florets. Nature 420:625–626

    CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor NL, Baxter CJ, Eickmeier I, Fernie AR (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci USA 103:19587–19592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sweetman C, Waterman CD, Rainbird BM, Smith PMC, Jenkins CD, Day DA, Soole KL (2019) AtNDB2 Is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant Physiol 181:774–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W (1987) Heat production in cycad cones. Botl Gaz 148:165–174

    Google Scholar 

  • Terry I, Moore CJ, Walter GH, Forster PI, Roemer RB, Donaldson JD, Machin PJ (2004) Association of cone thermogenesis and volatiles with pollinator specificity in Macrozamia cycads. Plant Syst Evol 243:233–247

    Google Scholar 

  • Terry I, Walter GH, Moore C, Roemer R, Hull C (2007) Odor-mediated push-pull pollination in cycads. Science 318:70. https://doi.org/10.1126/science.1145147

    Article  CAS  PubMed  Google Scholar 

  • Uemura S, Ohkawara K, Kudo G, Wada N, Higashi S (1993) Heat-production and cross-pollination of the Asian skunk cabbage Symplocarpus renifolius. Am J Bot 80:635–640

    Google Scholar 

  • Wagner AM, Krab K, Wagner MJ, Moore AL (2008) Regulation of thermogenesis in flowering Araceae: the role of the alternative oxidase. Biochim Biophys Acta Bioenerg 1777:993–1000

    CAS  Google Scholar 

  • Watling JR, Robinson SA, Seymour RS (2006) Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol 140:1367–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wehner N, Hartmann L, Ehlert A, Böttner S, Oñate-Sánchez L, Dröge-Laser W (2011) High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. Plant J 68:560–569

    CAS  PubMed  Google Scholar 

  • Yafuso M (1993) Thermogenesis of Alocasia odora (Araceae) and the role of Colocasiomyia flies (Diptera: Drosophilidae) as cross-pollinators. Environ Entomol 22:601–606

    Google Scholar 

  • Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    CAS  PubMed  Google Scholar 

  • Zhai Z, Sooksa-nguan T, Vatamaniuk OK (2009) Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiol 149:642–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30. https://doi.org/10.1186/1746-4811-7-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang L, He C, Luo H (2016) An efficient transient mesophyll protoplast system for investigation of the innate immunity responses in the rubber tree (Hevea brasiliensis). Plant Cell Tissue Organ Cult 126:281–290

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Yoko Katayama (University of Miyazaki) for their assistance in the cultivation of skunk cabbage plants. This work was supported by a Grant-in-Aid for Scientific Research (grant no. 20H02917 to Y.I.-I., and grant nos. 18H02169 and 20K21282 to T. I.), by the Takeda Science Foundation, and by the Sasakawa Scientific Research Grant from The Japan Science Society.

Funding

This work was supported by a Grant-in-Aid for Scientific Research (grant no. 20H02917 to Y.I.-I., and grant nos. 18H02169 and 20K21282 to T. I.), by the Takeda Science Foundation, and by the Sasakawa Scientific Research Grant from The Japan Science Society.

Author information

Authors and Affiliations

Authors

Contributions

HM, MO, KM, DK, TI, and YII conducted the experiments. YII and TI analyzed the data. YII, MPS, and TT contributed to the experimental design. YII wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Yasuko Ito-Inaba.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by Kinya Toriyama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 23526 KB)

Supplementary file2 (XLSX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maekawa, H., Otsubo, M., Sato, M.P. et al. Establishing an efficient protoplast transient expression system for investigation of floral thermogenesis in aroids. Plant Cell Rep 41, 263–275 (2022). https://doi.org/10.1007/s00299-021-02806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02806-1

Keywords

Navigation