Abstract
Key message
TCX8 localizes to nucleus and has transcriptional repression activity. TCX8 binds to the promoter region of LOX2 encoding lipoxygenase, causing JA biosynthesis suppression, and thereby delays plant senescence.
Abstract
Conserved CXC domain-containing proteins are found in most eukaryotes. Eight TCX proteins, which are homologs of animal CXC–Hinge–CXC (CHC) proteins, were identified in Arabidopsis, and three of them, TSO1, TCX2/SOL2 and TCX3/SOL1, have been reported to affect cell-cycle control. TCX8, one of the TCX family proteins, was believed to be a TF but its precise function has not been reported. Yeast two-hybrid screening revealed TCP20, a TF that binds to the promoter of LOX2 encoding lipoxygenase, as a strong candidate for interaction with TCX8. We confirmed that TCX8 directly interacts with TCP20 using in vitro pull-down assay and in vivo BiFC and observed that TCX8, as a TF, localizes to nucleus. Using EMSA and by analyzing phenotypes of TCX8-overexpression lines, we demonstrated that TCX8 regulates the expression of LOX2 by binding to either cis-element of LOX2 promoter to which TCP20 or TCP4 binds, affecting JA biosynthesis, and thereby delaying plant senescence. Our study provides new information about the role of TCX8 in modulating plant senescence through regulating LOX2 expression.





Similar content being viewed by others
Abbreviations
- GUS:
-
β-Glucuronidase
- JA:
-
Jasmonic acid
- LOX:
-
Lipoxygenase
- LUC:
-
Luciferase
- TCX:
-
Tesmin/TSO1-like CXC domain-containing protein
- TF:
-
Transcription factor
References
Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22:1174–1189
Andersen SU et al (2007) The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J Exp Bot 58:3657–3670
Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612
Bannenberg G, Martinez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–95
Beitel GJ, Lambie EJ, Horvitz HR (2000) The C-elegans gene lin-9, which acts in an Rb-related pathway, is required for gonadal sheath cell development and encodes a novel protein. Gene 254:253–263
Chytilova E, Macas J, Sliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
Danisman S (2016) TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci 7:1930
Danisman S et al (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159:1511–1523
Danisman S et al (2013) Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot 64:5673–5685
Fischer M, Muller GA (2017) Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 52:638–662
Gould SJ, Subramani S (1988) Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175:5–13
Haga N et al (2007) R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134:1101–1110
Hauser BA, He JQ, Park SO, Gasser CS (2000) TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 127:2219–2226
Hensel LL, Grbić V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564
Jiang J, White-Cooper H (2003) Transcriptional activation in Drosophila spermatogenesis involves the mutually dependent function of aly and a novel meiotic arrest gene cookie monster. Development 130:563–573
Jiang J, Benson E, Bausek N, Doggett K, White-Cooper H (2007) Tombola, a tesmin/TSO1-family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with always early. Development 134:1549–1559
Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, Cheong GW, Hwang I (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13:1511–1525
Kim J, Kim JH, Lyu JI, Woo HR, Lim PO (2018) New insights into the regulation of leaf senescence in Arabidopsis. J Exp Bot 69:787–799
Kobayashi K et al (2015) Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J 34:1992–2007
Koncz C, Schell J (1986) The promoter of T L-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol General Genet MGG 204:383–396
Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. Curr Protocols Food Anal Chem 1:F4.3.1-F4.3.8
Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136
Lin TY, Viswanathan S, Wood C, Wilson PG, Wolf N, Fuller MT (1996) Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males. Development 122:1331–1341
Lopez JA, Sun Y, Blair PB, Mukhtar MS (2015) TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci 20:238–245
Magyar Z, Bogre L, Ito M (2016) DREAMs make plant cells to cycle or to become quiescent. Curr Opin Plant Biol 34:100–106
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497
Nguyen HT, Kim SY, Cho KM, Hong JC, Shin JS, Kim HJ (2016) A transcription factor gammaMYB1 binds to the P1BS cis-element and activates PLA2-gamma expression with its co-activator gammaMYB2. Plant Cell Physiol 57:784–797
Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194
Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21
Qi T et al (2015) Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27:1634–1649
Sadasivam S, DeCaprio JA (2013) The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer 13:585–595
Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 67:595–607
Schmit F et al (2007) LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle 6:1903–1913
Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152:1940–1950
Simmons AR, Davies KA, Wang W, Liu Z, Bergmann DC (2019) SOL1 and SOL2 regulate fate transition and cell divisions in the Arabidopsis stomatal lineage. Development 146:dev171066
Song JY, Leung T, Ehler LK, Wang C, Liu Z (2000) Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development 127:2207–2217
Sugihara T, Wadhwa R, Kaul SC, Mitsui Y (1999) A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation. Genomics 57:130–136
Viola IL, Reinheimer R, Ripoll R, Manassero NG, Gonzalez DH (2012) Determinants of the DNA binding specificity of class I and class II TCP transcription factors. J Biol Chem 287:347–356
Walter M et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438
Wang MY et al (2013) The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiol 162:1669–1680
Wang W, Sijacic P, Xu P, Lian H, Liu Z (2018) Arabidopsis TSO1 and MYB3R1 form a regulatory module to coordinate cell proliferation with differentiation in shoot and root. Proc Natl Acad Sci USA 115:E3045–E3054
Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469
Wu JF et al (2016) LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7:13181
Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572
Zhang H, Zhou C (2013) Signal transduction in leaf senescence. Plant Mol Biol 82:539–545
Acknowledgements
This work was supported by a Grant (PJ01367001 to J.S.S.) from the Next-Generation BioGreen21 Program funded by the Rural Development Administration and by Grants (2019R1F1A1060014 to J.S.S. and 2020R1A6A1A03044344 to J.C.H.) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea. This work was also partially supported by Korea University.
Author information
Authors and Affiliations
Contributions
MN, SYK and JSS conceived the study; MN and SYK designed experiments; MN, JSS and SYK performed experiments; JCH provided Arabidopsis TF library and helped yeast screening; MN and JSS wrote the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Youn-Il Park.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Noh, M., Shin, J.S., Hong, J.C. et al. Arabidopsis TCX8 functions as a senescence modulator by regulating LOX2 expression. Plant Cell Rep 40, 677–689 (2021). https://doi.org/10.1007/s00299-021-02663-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00299-021-02663-y