Skip to main content
Log in

Characterization of a heavy-ion induced white flower mutant of allotetraploid Nicotiana tabacum

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We characterized a white flower mutant of allotetraploid N. tabacum as a DFR-deficient mutant; one copy of DFR has a cultivar-specific frameshift, while the other was deleted by heavy-ion irradiation.

Abstract

In most plants, white-flowered mutants have some kind of deficiency or defect in their anthocyanin biosynthetic pathway. Nicotiana tabacum normally has pink petals, in which cyanidin is the main colored anthocyanidin. When a relevant gene in the cyanidin biosynthetic pathway is mutated, the petals show a white color. Previously, we generated white-flowered mutants of N. tabacum by heavy-ion irradiation, which is accepted as an effective mutagen. In this study, we determined which gene was responsible for the white-flowered phenotype of one of these mutants, cv. Xanthi white flower 1 (xwf1). Southern blot analysis using a DNA fragment of the dihydroflavonol 4-reductase (DFR) gene as a probe showed that the xwf1 mutant lacked signals that were present in wild-type genomic DNAs. Sequence analysis demonstrated that one copy of the DFR gene (NtDFR2) was absent from the genome of the xwf1 mutant. The other copy of the DFR gene (NtDFR1) contained a single-base deletion resulting in a frameshift mutation, which is a spontaneous mutation in cv. Xanthi. Introduction of NtDFR2 cDNA into the petal limbs of xwf1 by particle bombardment resulted in production of the pink-colored cells, whereas introduction of NtDFR1 cDNA did not. These results indicate that xwf1 is a DFR-deficient mutant. One copy of NtDFR1 harbors a spontaneous frameshift mutation, while the other copy of NtDFR2 was deleted by heavy-ion beam irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe T, Yoshida S, Sakamoto T, Kameya T, Kitayama S, Inabe N, Kase M, Goto A, Yano Y (1995) Is irradiation of heavy ion beams at specific stages of the fertilization cycle of plants effective for mutagenesis? In: Oono K, Takaiwa F (eds) Modification of gene expression and non-Mendelian inheritance. Proceedings of the US–Japanese Joint Meeting, NIAR and STA, pp 469–477

  • Abe T, Bae CH, Ozaki T, Wang K, Yoshida S (2000a) Stress-tolerant mutants induced by heavy-ion beams. Gamma Field Symp 39:45–54

    Google Scholar 

  • Abe T, Miyagai M, Yoshida S (2000b) Effective plant-mutation method using heavy-ion beams (IV). RIKEN Accel Prog Rep 33:140

    Google Scholar 

  • Bai Y, Pattanaik S, Patra B, Werkman JR, Xie CH, Yuan L (2011) Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. Planta 234:363–375. doi:10.1007/s00425-011-1407-y

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330. doi:10.1016/S0960-9822(02)00483-9

    Article  PubMed  CAS  Google Scholar 

  • Coker JS, Davies E (2003) Selection of candidate housekeeping controls in tomato plants using EST data. Bio Technol 35:740–748

    CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Gavilano LB, Coleman NP, Bowen SW, Siminszky B (2007) Functional analysis of nicotine demethylase genes reveals insight into the evolution of modern tobacco. J Biol Chem 282:249–256. doi:10.1074/jbc.M609512200

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780. doi:10.1146/annurev.arplant.57.032905.105248

    Article  PubMed  CAS  Google Scholar 

  • Hamatani M, Iitsuka Y, Abe T, Miyoshi K, Yamamoto M, Yoshida S (2001) Mutant flowers of dahlia (Dahlia pinnata Cav.) induced by heavy-ion beams. RIKEN Accel Prog Rep 34:169–170

    Google Scholar 

  • Hara Y, Abe T, Sakamoto K, Miyazawa Y., Yoshida S (2003) Effects of heavy-ion beam irradiation in rose (Rosa hybrid cv. ‘Bridal Fantasy’) (II). RIKEN Accel Prog Rep 36:135

    Google Scholar 

  • Helariutta Y, Elomaa P, Koiliainen M, Seppanen P, Teeri TH (1993) Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrid var. Regina (Compositae). Plant Mol Biol 22:183–193

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kazama Y, Ohbu S, Shirakawa Y, Liu Y, Kambara T, Fukunishi N, Abe T (2012) Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana. Mutat Res 735:19–31. doi:10.1016/j.mrfmmm.2012.04.010

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083. doi:10.1105/tpc.7.7.1071

    PubMed  CAS  Google Scholar 

  • Ishii S, Hayashi Y, Ryuto H, Fukunishi N, Abe T (2009) A new cultivar “Nishina Zaou” induced by heavy ion beam irradiation. RIKEN Accel Prog Rep 42:xi

  • Johnson ET, Ryu S, Yi HK, Shin B, Cheong H, Choi G (2001) Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J 25:325–333. doi:10.1046/j.1365-313x.2001.00962.x

    Article  PubMed  CAS  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600. doi:10.1093/pcp/pcm131

    Article  PubMed  CAS  Google Scholar 

  • Kazama Y, Saito H, Miyagai M, Takehisa H, Ichida H, Miyazawa Y, Mishiba K, Kanaya T, Suzuki K, Bae C, Miyoshi K, Mii M, Abe T (2008) Effect of heavy ion-beam irradiation on plant growth and mutation induction in Nicotiana tabacum. Plant Biotechnol 25:105–111

    Article  CAS  Google Scholar 

  • Kazama Y, Fujiwara MT, Koizumi A, Nishihara K, Nishiyama R, Kifune E, Abe T, Kawano S (2009) A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia. Plant Cell Physiol 50:1127–1141. doi:10.1093/pcp/pcp064

    Article  PubMed  CAS  Google Scholar 

  • Kazama Y, Hirano T, Saito H, Liu Y, Ohbu S, Hayashi Y, Abe T (2011) Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol 11:161. doi:10.1186/1471-2229-11-161

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Baek D, Cho DY, Lee ET, Yoon MK (2009) Identification of two novel inactive DFR-A alleles responsible for failure to produce anthocyanin and development of a simple PCR-based molecular marker for bulb color selection in onion (Allium cepa L.). Theor Appl Genet 118:1391–1399. doi:10.1007/s00122-009-0989-2

    Article  PubMed  CAS  Google Scholar 

  • Kose R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242. doi:10.1016/j.tplants.2005.03.002

    Article  Google Scholar 

  • Lawton-Rauh (2003) Evolutionary dynamics of duplicated genes in plants. Mol Phylogenet Evol 29:396–409. doi:10.1016/j.ympev.2003.07.004

  • Miyazaki K, Suzuki K, Iwaki K, Kusumi T, Abe T, Yoshida S, Fukui H (2006) Flower pigment mutations induced by heavy ion beam irradiation in an inter specific hybrid of Torenia. Plant Biotechnol 23:163–167

    Article  CAS  Google Scholar 

  • Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006) Isolation of cDNAs for R2R3-Myb, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47:457–470. doi:10.1093/pcp/pcj012

    Article  PubMed  CAS  Google Scholar 

  • Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR (2002) The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89:921–928

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Abe T, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959. doi:10.1007/s00299-007-0401-0

    Article  PubMed  CAS  Google Scholar 

  • Nishihara M, Nakatsuka T, Yamamura S (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerise gene. FEBS Lett 579:6074–6078. doi:10.1016/j.febslet.2005.09.073

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Okamura M (2006) Flower breeding by quantum beam technology, and its commercialization. Gamma Field Symp 45:77–87

    Google Scholar 

  • Park JS, Kim JB, Cho KJ, Cheon CI, Sung MK, Choung MG, Roh KH (2008) Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Rep 27:985–994. doi:10.1007/s00299-008-0521-1

    Article  PubMed  CAS  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061–1076. doi:10.1007/s00425-010-1108-y

    Article  PubMed  CAS  Google Scholar 

  • Petit P, Granier T, d’Estaintot BL, Manigand C, Bathany K, Schmitter JM, Lauvergeat V, Hamdi S, Gallois B (2007) Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis. J Mol Biol 368:1345–1357. doi:10.1016/j.jmb.2007.02.088

    Article  PubMed  CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401. doi:10.1023/A:1006342018991

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Aida R, Niki T, Yamaguchi H, Narumi T, Nishijima T, Hayashi Y, Ryuto H, Fukunishi N, Abe T, Ohtsubo N (2008) High-efficiency improvement of transgenic torenia flowers by ion beam irradiation. Plant Biotechnol 25:81–89

    Article  CAS  Google Scholar 

  • Shimada Y, Ohbayashi M, Nakano-Shimada R, Okinaka Y, Kiyokawa S, Kikuchi Y (2001) Genetic engineering of the anthocyanin biosynthetic pathway with flavonoid-3′,5′-hydroxylase: specific switching of the pathway in petunia. Plant Cell Rep 20:456–462. doi:10.1007/s002990100319

    Article  CAS  Google Scholar 

  • Sugiyama M, Hayashi Y, Fukunishi N, Ryuto H, Terakawa T, Abe T (2008) Development of flower colour mutant of Dianthus chinensis var. semperflorens by heavy-ion beam irradiation. RIKEN Accel Prog Rep 41:229

    Google Scholar 

  • Suzuki K, Abe T, Katsumoto Y, Fukui Y, Yoshida S, Kusumi T (1999) Isolation of the flower-color changing mutant using heavy-ion beam irradiation. RIKEN Accel Prog Rep 32:146

    Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opi Biotechnol 19:190–197. doi:10.1016/j.copbio.2008.02.015

    Article  CAS  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell, Tissue Organ Cult 80:1–24. doi:10.1007/s11240-004-0739-8

    Article  CAS  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749. doi:10.1111/j.1365-313X.2008.03447.x

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S (2010) Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci Biotechnol Biochem 74:1760–1769. doi:10.1271/bbb.100358

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. doi:10.1104/pp.126.2.485

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This experiment was performed at the Radioactive Ion Beam Factory, operated by RIKEN Nishina Center and CNS, University of Tokyo. We thank the RIKEN Research Resources Center of the Brain Science Institute for performing DNA sequencing analyses. This work was partially supported by grants from the Research Project Utilizing Advanced Technologies in Agriculture, Forestry and Fisheries (Ministry of Agriculture, Forestry and Fisheries of Japan), the Social Infrastructure Technology Development Program (RIKEN), and the Funding Program for Next Generation World-Leading Researchers (Council for Science and Technology Policy from the Japan Society for the Promotion of Science), for TA. This work was also partially supported by Grants-in-Aid for Scientific Research (no. 20780009 and no. 23770070 to YK) from the Japan Society for the Promotion of Science, and the Special Postdoctoral Research Program of RIKEN (to YK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Abe.

Additional information

Communicated by K. Toriyama.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazama, Y., Fujiwara, M.T., Takehisa, H. et al. Characterization of a heavy-ion induced white flower mutant of allotetraploid Nicotiana tabacum . Plant Cell Rep 32, 11–19 (2013). https://doi.org/10.1007/s00299-012-1336-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1336-7

Keywords

Navigation