Skip to main content
Log in

Several cis-elements including a palindrome involved in pollen-specific activity of SBgLR promoter

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

SBgLR (Solanum tuberosum genomic lysine-rich) is a pollen-specific gene cloned from potato (Solanum tuberosum L.). The region from −269 to −9 (The A of translation start site “ATG” as +1) of the SBgLR promoter was identified as critical for gene specific expression in pollen grains. Sequence analysis indicates a palindromic sequence “TTTCTATTATAATAGAAA” in the −227 to −209 region, in which two pollen-specific motifs TTTCT and AGAAA surround a unique putative TATA box. Moreover, nine putative pollen-specific motifs are located in the region between the TATA box and ATG. We placed the −227 to −9 region (reserving the palindrome) and the −222 to −9 region (breaking the palindrome) downstream of the CaMV35S enhancer, respectively, to construct two fusion promoters. Histochemical assays in transgenic plants demonstrated that the region from −222 to −9 is necessary and sufficient for pollen-specific expression of the uidA gene. However, the region of −227 to −9 is incapable of driving GUS expression in pollen grains and parts of vegetative tissues. A series of 5′ deletions from −269 to −9 of SBgLR promoter were constructed. A transient expression assay indicated that the region from the −227 to −9 suppressed gfp gene expression in pollen, and a positive regulatory element was present in the region of −253 to −227. The function of the palindromic sequence as a repressor inhibiting gene expression in pollen was further confirmed by the mutated promoter, breaking the palindrome by substituting its 3′-flanking five base pairs, which resumes the reporter gene expression in mature pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Chua N-H (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24:2810–2826

    Article  PubMed  CAS  Google Scholar 

  • Eyal Y, Curie C, McCormick S (1995) Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 7:373–384

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An G (1999) Isolation and characterization of an anther-specific gene, RA8 from rice (Oryza sativa L.). Plant Mol Biol 39:35–44

    Article  PubMed  CAS  Google Scholar 

  • Kong LJ, Chang JT, Bild AH, Nevins JR (2007) Compensation and specificity of function within the E2F family. Oncogene 26:321–327

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase in transformed cell: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci 710:133–140

    Article  Google Scholar 

  • Lang ZH, Zhou P, Yu JJ, Ao GM, Zhao Q (2008) Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta 227(2):387–396

    Article  PubMed  CAS  Google Scholar 

  • Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14:2551–2569

    Article  PubMed  CAS  Google Scholar 

  • Liu JQ, Seul U, Thompson R (1997) Cloning and characterization of a pollen-specific cDNA encoding a glutamic-acid-rich protein (GARP) from potato Solanum berthaultii. Plant Mol Biol 33:291–300

    Article  PubMed  CAS  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, Beuckeleer MD, Truettner J (1993) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 363:715–717

    Article  Google Scholar 

  • Mascarenhas JP (1989) The male gametophyte of flowering plants. Plant Cell 1:657–664

    Article  PubMed  Google Scholar 

  • Mascarenhas JP, Hamilton DA (1992) Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV 35S-GUS construct. Plant J 2:405–408

    Article  CAS  Google Scholar 

  • Morishita R, Gibbons HG, Horiuchi M, Ellison EK, Nakajima M, Zhang L, Kanedat Y, Ogiharat T, Dzau JV (1995) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 92:5855–5859

    Article  PubMed  CAS  Google Scholar 

  • Paglino J, Burnett E, Tattersall P (2007) Exploring the contribution of distal P4 promoter elements to the oncoselectivity of Minute Virus of Mice. Virology 361(1):174–184

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich A, Jin XV, Rabinovich R, Xu X, Farnham JP (2008) E2F in vivo binding specificity: comparison of consensus versus nonconsensus binding sites. Genome Res 18:1763–1777

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Starke J, Buttner M, Sauer N (2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol 131:70–77

    Article  PubMed  CAS  Google Scholar 

  • Slansky JE, Farnham PJ (1996) Introduction to the E2F family: protein structure and gene regulation. In: Farnham PJ (ed) Transcriptional control of cellgrowth: the E2F gene family. Springer, New York, pp 1–30

    Google Scholar 

  • Smith B, Fang H, Pan Y, Walker PR, Famili AF, Sikorska M (2007) Evolution of motif variants and positional bias of the cyclic-AMP response element. BMC Evol Biol 7(Suppl 1):S15

    Article  PubMed  Google Scholar 

  • Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  PubMed  CAS  Google Scholar 

  • Swoboda I, Bhalla PL, Xu H, Zhang Y, Mittermann I, Valenta R, Singh MB (2001) Identification of pronp1, a tobacco profilin gene activated in tip-growing cells. Plant Mol Biol 46:531–538

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Kassatly FR, Cress WD, Horowitz MJ (1997) Subunit Composition Determines E2F DNA-Binding Site Specificity. Mol Cell Biol 17:6994–7007

    PubMed  CAS  Google Scholar 

  • Twell D, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genomics 217:240–245

    Article  CAS  Google Scholar 

  • Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific expression in transgenic plants: coordinate regulation of two different promoters during microsporogenesis. Development 109:705–713

    PubMed  CAS  Google Scholar 

  • Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507

    Article  PubMed  CAS  Google Scholar 

  • Twell D, Oh SA, Honys D (2006) Pollen development, a genetic and transcriptomic view. In: Malho R (ed) The pollen tube: cellular and molecular perspective. Plant Cell Monographs, vol 3. Springer, Berlin, pp 15–45

    Google Scholar 

  • Wang X, Zhu L, Liu B, Wang C, Jin LF, Zhao Q, Yuan M (2007) Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19:877–889

    Article  PubMed  CAS  Google Scholar 

  • Weinmann SA, Bartley MS, Zhang T, Zhang QM, Farnham JP (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol 21:6820–6832

    Article  PubMed  CAS  Google Scholar 

  • Weterings K, Schrauwen J, Wullems G, Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J 8:55–63

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Bieda M, Jin VX, Rabinovich A, Oberley MJ, Green R, Farnham PJ (2007) A comprehensive ChIP-chip analysis of E2F1, E2F4 and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res 17:1550–1561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation (Grant No. J0730639 and 30971638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhao.

Additional information

Communicated by P. Puigdomenech.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 737 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, P., Yang, F., Yu, J. et al. Several cis-elements including a palindrome involved in pollen-specific activity of SBgLR promoter. Plant Cell Rep 29, 503–511 (2010). https://doi.org/10.1007/s00299-010-0839-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0839-3

Keywords

Navigation