Skip to main content
Log in

Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

For the first time, the phosphomannose isomerase (PMI, EC 5.3.1.8)/mannose-based “positive” selection system has been used to obtain genetically engineered sugarcane (Saccharum spp. hybrid var. CP72-2086) plants. Transgenic lines of sugarcane were obtained following biolistic transformation of embryogenic callus with an untranslatable sugarcane mosaic virus (SCMV) strain E coat protein (CP) gene and the Escherichia coli PMI gene manA, as the selectable marker gene. Postbombardment, transgenic callus was selectively proliferated on modified MS medium containing 13.6 μM 2,4-D, 20 g l−1 sucrose and 3 g l−1 mannose. Plant regeneration was obtained on MS basal medium with 2.5 μM TDZ under similar selection conditions, and the regenerants rooted on MS basal medium with 19.7 μM IBA, 20 g l−1 sucrose, and 1.5 g l−1 mannose. An increase in mannose concentration from permissive (1.5 g l−1) to selective (3 g l−1) conditions after 3 weeks improved the overall transformation efficiency by reducing the number of selection escapes. Thirty-four vigorously growing putative transgenic plants were successfully transplanted into the greenhouse. PCR and Southern blot analyses showed that 19 plants were manA-positive and 15 plants were CP-positive, while 13 independent transgenics contained both transgenes. Expression of manA in the transgenic plants was evaluated using a chlorophenol red assay and enzymatic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CI3:

Callus induction medium

CP:

Coat protein

CPR:

Chlorophenol red

2,4-D:

2,4-dichlorophenoxyacetic acid

IBA:

Indole-3-butyric acid

ID50 dose:

Selection dose required to achieve 50% growth inhibition

manA :

Escherichia coli phosphomannose isomerase gene

MS:

Murashige and Skoog medium

nptII:

Neomycin phosphotransferase II

PMI:

Phosphomannose isomerase (EC 5.3.1.8)

SCMV:

Sugarcane mosaic virus

SrMV:

Sorghum mosaic virus

TDZ:

Thidiazuron

References

  • Arencibia A, Molina P, de la Riva G, Selman-Housein G (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14:305–309

    Article  CAS  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto DL, Téllez P, Carmona ER, Coego A, Hernández L, de la Riva G, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3:247–255

    Article  Google Scholar 

  • Arencibia AD, Carmona ER, Téllez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Trans Res 7:213–222

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Cornide MT, Castiglione S, O’Reilly J, Chinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Trans Res 8:349–360

    Article  CAS  Google Scholar 

  • Aswath CR, Mo SY, Kim DH, Park SW (2006) Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Rep 25:92–99

    Article  PubMed  CAS  Google Scholar 

  • Boscariol RL, Almeida WAB, Derbyshire MTVC, Mourão Filho FAA, Mendes BMJ (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 22:122–128

    Article  PubMed  CAS  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated co-transformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249

    Article  CAS  Google Scholar 

  • Chengalrayan K, Gallo-Meagher M (2001) Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell Dev Biol Plant 37:434–439

    CAS  Google Scholar 

  • Chengalrayan K, Gallo-Meagher M, English RG (2001) Novel selection agents for sugarcane transformation. Soil Crop Sci Soc Fl Proc 60:81–87

    Google Scholar 

  • Chowdhury MKU, Vasil IK (1992) Stably transformed herbicide resistant callus of sugarcane via microprojectile bombardment of cell-suspension cultures and electroporation of protoplasts. Plant Cell Rep 11:494–498

    Article  Google Scholar 

  • Elliott AR, Campbell JA, Brettell RIS, Grof CPL (1998) Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aus J Plant Physiol 25:739–743

    Article  CAS  Google Scholar 

  • Enrìquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De la Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  Google Scholar 

  • Falco MC, Tulmann A, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    Article  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1993) Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12:666–670

    Article  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Gallo-Meagher M, English RG, Abouzid A (2000) Thidiazuron stimulates shoot regeneration of sugarcane embryogenic callus. In Vitro Cell Dev Biol Plant 36:37–40

    Article  CAS  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067

    Article  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using d-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  PubMed  CAS  Google Scholar 

  • He Z, Fu Y, Si H, Hu G, Zhang S, Yu Y, Sun Z (2004) Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Sci 166:17–22

    Article  CAS  Google Scholar 

  • He Z, Duan Z, Liang W, Chen F, Yao W, Liang H, Yue C, Sun Z, Chen F, Dai J (2006) Mannose selection system used for cucumber transformation. Plant Cell Rep DOI: 10.1007/s00299-006-0156-z

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Post-transcriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Article  Google Scholar 

  • Joersbo M, Donaldson I, Kreibeg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Joersbo M, Petersen SG, Okkels SG (1999) Parameters interacting with mannose selection employed for the production of transgenic sugar beet. Physiol Plant 105:109–115

    Article  CAS  Google Scholar 

  • Joersbo M, Mikkelsen JD, Brunstedt J (2000) Relationship between promotor strength and transformation frequencies using mannose selection for the production of transgenic sugar beet. Mol Breed 6:207–213

    Article  CAS  Google Scholar 

  • Joersbo M, Jørgensen K, Brunstedt J (2003) A selection system for transgenic plants based on galactose as selective agent and a UDP-glucose: galactose-1-phosphate uridyltransferase gene as selective gene. Mol Breed 11:315–323

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    Article  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  PubMed  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • O'Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  CAS  Google Scholar 

  • Privalle LS (2002) Phosphomannose isomerase, a novel plant selection system. Potential allergenicity assessment. Ann NY Acad Sci 964:129–138

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep DOI: 10.1007/s00299-006-0139-0

  • Reed J, Privalle LS, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang Y-F, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    CAS  Google Scholar 

  • Renz A, Stitt M (1993) Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers. Planta 190:166–175

    CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligrams amount of fresh, herbarium and mummified plant tissue. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Snyman SJ, Meyer GM, Richards JM, Haricharan N, Ramgareeb S, Huckett BI (2006) Refining the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep DOI: 10.1007/s00299-006-0148-z

  • Stein JC, Hansen G (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol 121:1–9

    Article  Google Scholar 

  • Todd R, Tague BW (2001) Phosphomannose isomerase: a versatile selection marker for Arabidopsis thaliana germ-line transformation. Plant Mol Biol Rep 19:307–319

    CAS  Google Scholar 

  • Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654–660

    Article  CAS  Google Scholar 

  • Weng LX, Deng H, Xu JL, Li Q, Wang LH, Jiang Z, Zhang HB, Li Q, Zhang LH (2006) Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Pest Manag Sci 62:178–187

    Article  PubMed  CAS  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048

    Article  CAS  Google Scholar 

  • Zhang P, Potrykus I, Puonti-Kaerlas J (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res 9:405–415

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. T. E. Mirkov for the gift of plasmids ubi-eut and pAHC17. The authors thank Drs. Altpeter and Wofford for critical reading of the manuscript. This research was supported by the Florida Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gallo.

Additional information

Communicated by J. C. Register

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, M., Chengalrayan, K., Abouzid, A. et al. Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26, 581–590 (2007). https://doi.org/10.1007/s00299-006-0244-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0244-0

Keywords

Navigation