Skip to main content

Advertisement

Log in

Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants

  • PHYSIOLOGY AND BIOCHEMISTRY
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

HSP70, a heat shock protein, is a molecular chaperone responsive to various environmental stresses. Here, NtHSP70-1 (AY372069) was a drought-/ABA-inducible gene. We monitored the expression of CaERD15 (early responsive to dehydration, DQ267932) with exposing plants to progressive drought stress. Its activity was used as an indicator of water-deficit conditions. To analyze the protective role of HSP70, we obtained transgenic tobacco plants that constitutively expressed elevated levels of the tobacco HSP70, NtHSP70-1, as well as transgenic plants containing either the vector alone or else having NtHSP70-1 in the antisense orientation. Plants with enhanced levels of NtHSP70-1 in their transgenic sense lines exhibited tolerance to water stress. Under progressive drought, the amount of leaf NtHSP70-1 was correlated with maintenance of optimum water content, with contents being higher in the leaves of dehydrated transgenic sense plants than in those of either the control (vector-only) or the transgenic antisense plants. Moreover, the expression of CaERD15 was considerably reduced in tobacco plants that over-expressed NtHSP70-1. These results suggest that elevated levels of NtHSP70-1 can confer drought-stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NtHSP70-1 :

Nicotiana tabacum Heat Shock Protein 70-1

CaERD15 :

Capsicum annuum early response to dehydration gene 15

ABA:

abscisic acid

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Albrecht M, Lengauer T (2004) Survey on the PABC recognition motif PAM2. Biochem Biophys Res Commun 316:129–138

    Article  PubMed  CAS  Google Scholar 

  • Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • An G, Ebert PR, Mitre A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, Kluwer, Dordrecht, pp 1–19

    Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Fluhr R (2000) The molecular basis of cross tolerance. Trends Plant Sci 5:241–246

    Article  PubMed  CAS  Google Scholar 

  • Boyer EA (1993) Plant productivity and environment. Science 218:443–448

    Article  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:45–54

    Article  Google Scholar 

  • Cellier F, Conéjéro G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol 116:319–328

    Article  PubMed  CAS  Google Scholar 

  • Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45:113–141

    Article  CAS  Google Scholar 

  • Cho EK, Hong CB (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J Plant Biol 47:149–159

    Article  CAS  Google Scholar 

  • Cho YB, Jeon HJ, Hong CB (2003) Cloning and functional annotation of rare mRNA species from drought-stressed hot pepper (Capsicum annuum). J Plant Biol 46:83–89

    Article  CAS  Google Scholar 

  • Dat J, Vandenbeele S, Vranova E, van Montagu M, Inze D, van Breusegm F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Dix DJ (1997) Hsp70 expression during gametogenesis. Cell Stress Chap 2:73–77

    Article  CAS  Google Scholar 

  • Doczi R, Kondrak M, Kovacs G, Beczner F, Banfalvi Z (2005) Conservation of the drought-inducible DS2 genes and divergences from their ASR paralogues in solanaceous species. Plant Physiol Biochem 43:269–276

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock protein, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvierdurand M, Vartanian N (1994) Current advances in abscisic acid action and signaling. Plant Mol Biol 26:1557–1577

    Article  PubMed  CAS  Google Scholar 

  • Hammond C, Helenius A (1995) Quality control in the secretory pathway. Curr Opin Cell Biol 7:523–529

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NC, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transforming gene into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Kahvejian A, Roy G, Sonenberg N (2001) The mRNA closed loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harbor Symp Quant Biol 66:293–300

    Article  PubMed  CAS  Google Scholar 

  • Kariola T, Helenius E, Brader G, Li J, Heino P, Palva ET (2005) ERD15 modulates abiotic stress responses in Arabidopsis. The 5th Workshop in the Nordic Arabidopsis Network, Denmark

  • Kim HS, Lee JH, Kim JJ, Kim CH, Jun SS, Hong YN (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115–123

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K (1998) ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta 1370:187–191

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994a) ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol 106:1707–1712

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994b) Cloning of cDNA for genes that are early-response to dehydration stress (ERDs) in Arabidopsis thaliana L.: Identification of three ERDs as HSP cognate genes. Plant Mol Biol 25:791–798

    Article  PubMed  CAS  Google Scholar 

  • Krebs RA, Feder ME (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chap 2:60–71

    Article  CAS  Google Scholar 

  • Lang V, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104:1341–1349

    PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Schoffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19

    Article  PubMed  CAS  Google Scholar 

  • Luft JC, Dix DJ (1999) HSP70 expression and function during embryogenesis. Cell Stress Chap 4:162–170

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J 34:868–887

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Morency MJ, Drevet C, Jouanin L, Séguin A (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol 43:1–10

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn, Cold Spring Harbor Laboratory Press, New York

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Suh MC, Hong CB, Kim SS, Sim WS (1994) Transgenic tobacco plants with Bacillus thuringiensis delta-toxin gene resistant to Korean born tobacco budworms. Mol Cells 4:211–219

    CAS  Google Scholar 

  • Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol 56:29–55

    Article  PubMed  CAS  Google Scholar 

  • Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200:1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Wang X, Grumet R (2003) Identification and characterization of proteins that interact with the carboxy terminus of poly(A)-binding protein and inhibit translation in vitro. Plant Mol Biol 54:85–98

    Article  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka R, Soga K, Wakabayashi K, Takeba G, Hoson T (2003) Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls. Adv Space Res 31:2187–2193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Crop Functional Genomics Center of the 21st Century Frontier Research Program (code #1434) and the Ministry of Science and Technology of the Republic of Korea to C. B. Hong. E. K. Cho was partially supported by a grant for the Pre-Doctoral Students of Korea Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Kyung Cho.

Additional information

Communicated by I. S. Chung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, E.K., Hong, C.B. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25, 349–358 (2006). https://doi.org/10.1007/s00299-005-0093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0093-2

Keywords

Navigation