Skip to main content
Log in

Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype

Plant Cell Reports Aims and scope Submit manuscript

Abstract

A system for genetic transformation of Coffea canephora by co-cultivation with Agrobacterium rhizogenes harbouring a binary vector has been developed. The objective of the present study was the genetic transformation and direct regeneration of transformants through secondary embryos bypassing an intervening hairy root stage. Transformants were obtained with a transformation efficiency up to 3% depending on the medium adjuvant used. A. rhizogenes strain A4 harbouring plasmid pCAMBIA 1301 with an intron uidA reporter and hygromycin phosphotransferase (hptII) marker gene was used for sonication-assisted transformation of Coffea canephora. The use of hygromycin in the secondary embryo induction medium allowed the selection of transgenic secondary embryos having Ri T-DNA along with the T-DNA from the pCAMBIA 1301 binary vector. In addition transgenic secondary embryos devoid of Ri-T-DNA but with stable integration of the T-DNA from the binary vector were obtained. The putative transformants were positive for the expression of the uidA gene. PCR and Southern blot analysis confirmed the independent, transgenic nature of the analysed plants and indicated single and multiple locus integrations. The study clearly demonstrates that A. rhizogenes can be used for delivering transgenes into tree species like Coffea using binary vectors with Agrobacterium tumefaciens T-DNA borders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barton CR, Adams TL, Zorowitz MA (1991) Stable transformation of foreign DNA into Coffea arabica plants. In: Proceedings of the 14th International Scientific Colloquium on Coffee. ASIC, San Fransisco, pp 460–464

    Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    PubMed  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  PubMed  CAS  Google Scholar 

  • Capelle SC, Mok DWS, Kirchner SC, Mok MC (1983) Effects of thidiazuron on cytokinin autonomy and the metabolism of N6-(Y2- isopentyl) [8–14c] adenosine in callus tissues of Phaseolus lunatus L. Plant Physiol 73:796–802

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Cassedelpart F, Tempe J (1982) Agrobacterium rhizogenes inserts T DNA into the genomes of the host plants root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Christey MC, Sinclair BK, Braun RH, Wyke L (1997) Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri mediated transformation. Plant Cell Rep 16:587–593

    CAS  Google Scholar 

  • Christey MC (2001) Use of Ri mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol-Plant 37(6):687–700

    Article  CAS  Google Scholar 

  • De Block MD, Debrouwer D (1992) In-situ enzyme histochemistry on plastic-embedded plant material: the development of an artifact free beta-glucoronidase assay. Plant J 2:261–266

    Article  Google Scholar 

  • De Framond AJ, Back EW, Chilton WS, Kayes L, Chilton MD (1986) Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet 202(1):125–131

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 5:151–158

    Article  Google Scholar 

  • Giridhar P, Indu EP, Ravishankar GA, Chandrashekar A (2004a) Influence of Triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex. Fr. In Vitro Cell Dev Biol-Plant 40:200–203

    Article  Google Scholar 

  • Giridhar P, Indu EP, Vijayaramu D, Ravishankar GA (2003) Effect of silver nitrate on in vitro shoot growth of coffee. Trop Sci 43:144–146

    Article  Google Scholar 

  • Giridhar P, Indu EP, Vinod K, Chandrashekar A, Ravishankar GA (2004b) Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P. Ex. Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiol Plant 26:299–305

    Article  CAS  Google Scholar 

  • Giridhar P, Vinod K, Indu EP, Ravishankar GA, Chandrashekar A (2004c) Thidiazuron induced somatic embryogenesis in Coffea arabica L. and Coffea canephora P ex Fr. Acta Bot Croat 63:25–33

    CAS  Google Scholar 

  • Hatanaka T, Choi YE, Kusano T, Sano H (1999) Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens—mediated transformation. Plant Cell Rep 19:106–110

    Article  CAS  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL, Davis KM (1999) Agrobacterium rhizogenes mediated transformation of broccoli (Brassica oleracea L. var. Italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143:55–62

    Article  CAS  Google Scholar 

  • Karimi M, Montagu VM, Gheysen G (1999) Hairy root production in Arabidopsis thaliana: cotransformation with a promoter trap vector results in complex T-DNA integration patterns. Plant Cell Rep 19:133–142

    Article  CAS  Google Scholar 

  • Kosugi S, Ohtai Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely supressess a putative endogenous β-glucuronidase activity. Plant Sci 70:133–140

    Article  CAS  Google Scholar 

  • Larry CF, Stephen MA, Pat JR (1994) Scanning electron microscopy of hydrated and desiccated mature somatic embryos and zygotic embryos of white spruce (Picea glauca [Moench] Voss). Plant Cell Rep 13:612–618

    Google Scholar 

  • Leroy T, Royer M, Paillard M, Berthouly M, Spiral J, Tessereau S, Legavre T, Altosaar I (1997) Introduction de gènes d'intérêt agronomique dans l'espèce Coffea canephora Pierre par transformation avec Agrobacterium sp. In: ASIC (eds) 17th colloquium, Nairobi (Ken), 20–25 July 1997. ASIC, Paris, France, pp 439–446

  • Leroy T, Henry AM, Royer M, Altosar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    Article  CAS  Google Scholar 

  • Manners JM, Way H (1989) Efficient transformation with regeneration of the tropical pasture legume Stylosanthes humilis using Agrobacterium rhizogenes and a Ti plasmid-binary vector system. Plant Cell Rep 8:341–345

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamopto T (1982) Cytokinin activity of N-phenyl-N′-1,2,3,-thidiazol-5-yl urea (thidiazuron). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:73–497

    Article  Google Scholar 

  • Ogita S, Uefuji H, Morimoto M, Sano H (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Castillo C, Chalmers KJ, Powell W, Waugh R (1996) RAPD and organelle specific PCR re-affirms taxonomic relationships within the genus Coffea. Plant Cell Rep 15:337–341

    Article  CAS  Google Scholar 

  • Rani V, Singh KP, Shiran M, Nandy S, Goel S, Devarumath RM, Sreenath HL, Raina SN (2000) Evidence for new nuclear and mitochondrial genome organizations among high frequency embryogenesis-derived plants of allotetraploid Coffea arabica L. (Rubiaceae). Plant Cell Rep 19:1013–1020

    Article  CAS  Google Scholar 

  • Rao RS, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Advances 20:101–153

    Article  CAS  Google Scholar 

  • Ries SK. Wert VF (1977a) Growth response of rice seedlings to triacontanol in light and dark. Planta 135:77–82

    Article  CAS  Google Scholar 

  • Ries SK, Wert VF, Sweely CC. Leavitt RA (1977b) Triacontanol: a new naturally occurring plant growth regulator. Science 195:1337–1341

    Article  PubMed  Google Scholar 

  • Rosillo AG, Acuna JR, Gaitan AL, De Pena M (2003) Optimized DNA delivery into Coffea arabica suspension culture cells by particle bombardment. Plant Cell Tiss Org Cult 74:45–49

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Santarem ER, Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  CAS  Google Scholar 

  • Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T DNA, but no Ri-plasmid T-DNA. Theor Appl Genet 72:770–777

    Article  CAS  Google Scholar 

  • Sugiyama M, Matsuoka C, Takagi T (1995) Transformation of coffee with Agrobacterium rhizogenes. In: Proceedings of the 16th International Scientific Colloquium on Coffee. ASIC, Paris, France, pp 853–859

    Google Scholar 

  • Tantos A. Meszaros A. Kissimon J (1999) The effect of triacontanol on micro propagation of balm Melissa officinalis L. Plant Cell Rep 19:88–91

    Article  CAS  Google Scholar 

  • Van Boxtel J, Berthouly M (1996) High frequency somatic embryogenesis from coffee leaves: Factors influencing embryogenesis, and subsequent proliferation and regeneration in liquid medium. Plant Cell Tiss Org Cult 44:7–17

    Article  Google Scholar 

  • Van Boxtel J, Berthouly M, Carasco C, Dufour M, Eskes A (1995) Transient expression of β-glucuronidase following biolistic delivery of foreign DNA into coffee tissues. Plant Cell Rep 14:748–752

    Article  Google Scholar 

  • Yazaki K, Tanaka S, Matsuoka H, Sato F (1998) Stable transformation of Lithospermum erythrorhizon by Agrobacterium rhizogenes and shikonin production of the transformants. Plant Cell Rep 18:214–219

    Article  CAS  Google Scholar 

  • Zhao XC, Qu X, Mathews DE, Schaller GE (2002) Effect of ethylene—pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol 130:1983–1991

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Biotechnology, Government of India, for the financial assistance. VK, EPI and KVS are grateful to the CSIR, New Delhi for the award of Research Fellowships

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Ravishankar.

Additional information

Communicated by R. Schmidt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Satyanarayana, K.V., Sarala Itty, S. et al. Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Plant Cell Rep 25, 214–222 (2006). https://doi.org/10.1007/s00299-005-0045-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0045-x

Keywords

Navigation