Skip to main content
Log in

Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

We have developed an efficient transformation system for Tylophora indica, an important medicinal plant in India, using Agrobacterium rhizogenes strains LBA9402 and A4 to infect excised leaf and stem explants and intact shoots at different sites. The induction of callus and transformed roots was dependent on the bacterial strain, explant type and inoculation site used. Transformed roots were induced only in explants infected with A. rhizogenes strain A4, while an optimal transformation frequency of up to 60% was obtained with intact shoots inoculated at the nodes. The presence of the left-hand transferred DNA (TL-DNA) in the genome of T. indica roots induced by A. rhizogenes was confirmed by PCR amplification of the rooting locus genes of A. rhizogenes. Root growth and the production of tylophorine, the major alkaloid of the plant, varied substantially among the nine root clones studied. Both parameters increased over time in liquid cultures, with maximum biomass and tylophorine accumulation occurring within 4–6 weeks of growth in fresh medium. Interestingly, in liquid culture, the culture medium also accumulated tylophorine up to concentrations of 9.78±0.21 mg l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BM:

Basal medium

%DW:

Percentage dry weight

HPLC:

High performance liquid chromatography

NT:

Non-transformed

Ri:

Root-inducing

YMB:

Yeast mannitol broth

References

  • Abe F, Iwase Y, Yamauchi T, Honda K, Hayashi N (1995) Phenanthroindolizidine alkaloids from Tylophora tanakae. Phytochemistry 39:695–699

    Article  Google Scholar 

  • Abe F, Yamauchi T, Honda K, Omura H, Hayashi N (2001) Sequestration of phenanthro-indolizidine alkaloids by an Asclepiadaceae-feeding danaid butterfly, Ideopsis similis. Phytochemistry 56:697–701

    Article  Google Scholar 

  • Ambros PF, Matzke AJM, Matzke AM (1986) Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J 5:2073–2077

    Google Scholar 

  • Ali M (1991) Anticandidal constituents from Tylophora species. Acta Manilana Ser A 39:39–42

    Google Scholar 

  • Ali M, Ansari SH, Grever MR (2001) Cytotoxic alkaloids from Tylophora indica. Pharmazie 56:188–190

    Google Scholar 

  • Amselem J, Tepfer M (1992) Molecular basis of novel root phenotypes induced by Agrobacterium rhizogenes A4 on cucumber. Plant Mol Biol 19:421–432

    Article  Google Scholar 

  • Aoki T, Matsumoto H, Asako Y, Matsunaga Y, Shimomura K (1997) Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropa belladonna transformed with Agrobacterium rhizogenes 15864. Plant Cell Rep 16:282–286

    Article  CAS  Google Scholar 

  • Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154

    Article  Google Scholar 

  • Benjamin BD, Mulchandani NB (1973) Studies in biosynthesis of secondary constituents in tissue cultures of Tylophora indica. Planta Med 23:394–397

    Google Scholar 

  • Benjamin BD, Mulchandani NB (1976) Effect of gamma irradiation on biosynthetic potential of callus cultures of Tylophora indica. Planta Med 29:37–40

    Google Scholar 

  • Ben-Hayyim G, Martin-Tanguy J, Tepfer D (1996) Changing root and shoot architecture with the rolA gene from Agrobacterium rhizogenes: Interactions with gibberellic acid and polyamine metabolism. Physiol Plant 96:237–243

    Article  Google Scholar 

  • Bhutani KK, Sharma GL, Ali M (1987) Plant based antiamoebic drugs. Part I. Antiamoebic activity of phenanthro indolizidine alkaloids; common structural determinants of activity with emetine. Planta Med 53:532–536

    Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  Google Scholar 

  • Bush AL, Pueppke SG (1991) Cultivar-strain specificity between Chrysanthemum morifolium and Agrobacterium tumifaciens. Physiol Mol Plant Pathol 39:309–323

    Article  Google Scholar 

  • Cardarelli M, Spanò L, Mariotti D, Mauro ML, Constantino P (1987) The role of auxin in hairy root induction. Mol Gen Genet 208:457–480

    Article  Google Scholar 

  • Chaudhuri KN, Ghosh B, Jha S (2004) The root: a potential new source of competent cells for high-frequency regeneration in Tylophora indica. Plant Cell Rep 22:731–740

    Article  Google Scholar 

  • Dellaporta SL, Woods J, Hicks JB (1983) A plant DNA mini-preparation: version 2. Plant Mol Biol Rep 1:19–22

    CAS  Google Scholar 

  • Donaldson GR, Atkinson MR, Murray AW (1968) Inhibition of protein synthesis in Ehrlich ascites-tumor cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem Biophys Res Commun 31:104–109

    Article  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F-tests. Biometrics 11:1–42

    Google Scholar 

  • Filippini F, Lo Schiavo F, Terzi M, Constantino P, Trovato M (1994) The plant oncogene rolB alters binding to auxin to plant cell membranes. Plant Cell Physiol. 35:767–771

    Google Scholar 

  • Fukui H, Feroj Hasan AFM, Ueoka T, Kyo M (1998) Formation and secretion of a new brown benzoquinone by hairy root cultures of Lithospermum erythrorhizon. Phytochemistry 47:1037–1039

    Article  Google Scholar 

  • Gellert E (1982) The indolizidine alkaloids. J Nat Prod 45:50–73

    Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  Google Scholar 

  • Gopalakrishnan C, Shankaranarayan D, Nazimudeen SK, Kameswaran L (1980) Effect of tylophorine, a major alkaloid of Tylophora indica, on immunopathological and inflammatory reactions. Ind J Med Res 71:940–948

    Google Scholar 

  • Hamill JD, Lidgett AJ (1997) Hairy root cultures—opportunities and key protocols for studies in metabolic engineering. In: Doran PM (ed) Hairy roots. Gordon and Breach/Harwood Academic, London pp 1–30

    Google Scholar 

  • Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114

    Article  Google Scholar 

  • Hamill JD, Robins RJ, Rhodes MJC (1989) Alkaloid production by transformed root cultures of Cinchona ledgeriana. Planta Med 55:354–357

    Google Scholar 

  • Hobbs SLA, Jackson JA, Mahon JD (1989) Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumifaciens. Plant Cell Rep 8:55–58

    Article  Google Scholar 

  • Hooykaas PJ, Klapwjik PM, Nuit MP, Schilperoot RA, Hirsch A (1977) Transfer of the A. tumifaciens Ti plasmid to avirulent Agrobacteria and Rhizobium ex planta. J Gen Microbiol 98:477–484

    Google Scholar 

  • Hu ZB, Alfermann AW (1993) Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 32:699–703

    Article  Google Scholar 

  • Jayanthi M, Mandal PK (2001) Plant regeneration through somatic embryogenesis and RAPD analysis of regenerated plantlets in Tylophora indica (Burm. f.) Merrill. In Vitro Cell Dev Biol Plant 37:576–580

    Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    CAS  PubMed  Google Scholar 

  • Jouanin L, Guerche D, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392

    Article  Google Scholar 

  • Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci 50:145–152

    Article  Google Scholar 

  • Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50:2715–2722

    CAS  Google Scholar 

  • Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii by Agrobacterium rhizogenes. Plant Sci 59:191–201

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nilsson O, Crozier A, Schmülling G, Olsson O (1993) Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. Plant J 3:681–689

    Article  Google Scholar 

  • Ooms G, Atkinson J, Bossen ME, Leigh RA (1986) TL-DNA from Agrobacterium rhizogenes pRi1855 reduces osmotic pressure in transformed plants grown in vitro. Planta 168:106–112

    Article  Google Scholar 

  • Parr AJ, Hamill JD (1987) Relationship between Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry 26:3241–3245

    Article  Google Scholar 

  • Rao PS, Narayanaswamy S (1972) Morphogenetic investigations in callus cultures of Tylophora indica. Physiol Plant 27:271–276

    Google Scholar 

  • Rao PS, Narayanaswamy S, Benjamin BD (1970) Differentiation ex ovulo of embryos and plantlets in stem tissue cultures of Tylophora indica. Physiol Plant 23:140–144

    Google Scholar 

  • Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 21:1103–1107

    Google Scholar 

  • Sevón N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Chandel KPS (1992) Effect of ascorbic acid on axillary shoot induction in Tylophora indica (Burm. f.) Merrill. Plant Cell Tissue Organ Cult 29:109–113

    Article  Google Scholar 

  • Shen WH, Petit A, Guern J, Tempé J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85:3417–3421

    Google Scholar 

  • Shi HP, Kintzios S (2003) Genetic transformation of Pueraria phaseoloides with Agrobacterium rhizogenes and puerarin production in hairy roots. Plant Cell Rep 21:1103–1107

    Article  Google Scholar 

  • Shivpuri DN, Singhal SC, Prakash D (1972) Treatment of asthma with an alcoholic extract of Tylophora indica: a crossover, double-blind study. Ann Allergy 30:407–412

    Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid: identification of open reading frames. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1987) Introduction to biostatistics. WH Freeman, New York

    Google Scholar 

  • Spanò L, Mariotti D, Cardarelli M, Branca C, Constantino P (1988) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87:479–483

    Google Scholar 

  • Staerk D, Christensen J, Lemmich E, Duus J, Olsen CE, Jaroszewski JW (2000) Cytotoxic activity of some phenanthroindolizidine N-oxide alkaloids from Cynanchum vincetoxicum. J Nat Prod 63:1584–1586

    Article  Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D, Casse-Delbart F (1987) Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol Sci 4:1134–1141

    Google Scholar 

  • Tepfer D, Tempé J (1981) Production d’agropine par des racines transformes sous l’action d’Agrobacterium rhizogenes souche A4. CR Acad Sci Paris Ser 3 292:153–156

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Programme Coordinator, Centre of Advanced Study, Department of Botany for the facilities provided, Dr. F. Abe, Fukuoka University, Japan for authentic samples of tylophorine, to Dr. Albert Kollman, INRA, Versailles, France for his help in tylophorine analysis and to Mr. N. Roy for photography. Financial assistance from Indo-French Centre for the Promotion of Advanced Research (Centre Franco-Indien pour la Promotion de la Recherche Avancée) is gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha.

Additional information

Communicated by P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, K.N., Ghosh, B., Tepfer, D. et al. Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24, 25–35 (2005). https://doi.org/10.1007/s00299-004-0904-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0904-x

Keywords

Navigation