Skip to main content
Log in

Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Callus was obtained from hypocotyls of Mesembryanthemum crystallinum seedlings cultured on two types of medium—germination medium (GM) and callus induction medium (CIM). Following subculture on shoot induction medium SIM1, the callus formed on CIM medium regenerated roots or somatic embryos, while that obtained on GM medium was non-regenerative. The activities of CuZn-superoxidase dismutase (SOD) were comparable in all calli, but the activities of FeSOD and MnSOD varied according to the activity of photosystem II and the regenerative potential of the tissues. Catalase (CAT) activity was related to H2O2 concentration and affected by both the culture conditions and the morphogenic potential of the calli. The possible role of CAT, SODs and H2O2 in the regeneration of M. crystallinum from callus is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

BAP:

6-Benzylaminopurine

BSA:

Bovine serum albumin

CAM:

Crassulacean acid metabolism

CAT:

Catalase [EC 1.11.1.6]

DTT:

Dithiotreitol

2,4-D:

2,4-Dichlorophenoxyacetic acid

EDTA:

Ethylenediaminetetraacetic acid

F m :

Maximum chlorophyll a fluorescence

F 0 :

Minimum chlorophyll a fluorescence

Fv/Fm:

Maximum photochemical efficiency of photosystem II (Fv, the difference between Fm and F0)

NAA:

α-Naphthaleneacetic acid

NBT:

Nitro blue tetrazolium salt

PAGE:

Polyacrylamide gel electrophoresis

PEG:

Polyethylene glycol

RH:

Relative humidity

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase [EC 1.15.1.1]

TEMED:

N,N,N′,N-tetramethylethylenediamine

Tricine:

N-Tris[hydroxymethyl]methylglycine

References

  • Adams P, Nelson DE, Yamada S, Chmara, Jensen WG, Bohnert JH, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytopathol 138:171–190

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alsher RG, Erturk N, Heath L (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  Google Scholar 

  • Bagnoli F, Capuana M, Racchi ML (1998) Developmental changes of catalase and superoxide dismutase in zygotic and somatic embryos of horse chestnut. Aust J Plant Physiol 25:909–913

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Benson E, Lynch PT, Jones J (1992) Variation in free-radical damage in rice cell suspensions with different embryogenic potentials. Planta 188:296–305

    Article  CAS  Google Scholar 

  • Bohnert HJ, Cushman JC (2001) The ice plant cometh: lesson in abiotic stress tolerance. J Plant Growth Regul 19:334–346

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    CAS  Google Scholar 

  • Claire DA, Ngoc Duong M, Darr D, Archibald F, Fridovich I (1984) Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 140:532–537

    PubMed  Google Scholar 

  • Cui K, Xing G, Liu X, Xing G, Wang Y (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16

    Article  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Wulan T, Kuscuoglu N, Spatz MD (2000) Efficient plant regeneration of Mesembryanthemum crystallinum via somatic embryogenesis. Plant Cell Rep 19:459–463

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, van Montagu M, Inzè D, van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Mackerness RS-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  Google Scholar 

  • Halliwell B (1997) Free radicals and human disease-trick or treat?. In: Thomas CE, Kalyanaraman B (eds) Oxygen radicals and the disease process. Harwood Academic, Switzerland, pp 1–15

    Google Scholar 

  • Inzè D, van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  Google Scholar 

  • Konieczny R, Czaplicki A, Golczyk H, Przywara L (2003) Two pathways of plant regeneration in wheat anther culture. Plant Cell Tissue Org Cult 73:177–187

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Libik M, Pater B, Elliot S, Ślesak I, Miszalski Z (2004) Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism. Z Naturforsch 59c:223–228

    Google Scholar 

  • Lüttge U (1993) The role of crassulacean acid metabolism (CAM) in adaptation of plants to salinity. New Phytopathol 125:59–71

    Google Scholar 

  • Marco A de, Roubelakis-Angelakis KA (1996a) The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts. Plant Physiol 110:137–145

    PubMed  Google Scholar 

  • Marco A de, Roubelakis-Angelakis KA (1996b) Hydrogen peroxide plays a bivalent role in the regeneration of protoplasts. J Plant Physiol 149:109–114

    Google Scholar 

  • Meiners MS, Thomas JC, Bohnert HJ, Cushman JC (1991) Regeneration of multiple shoots and plants from Mesembryanthemum crystallinum. Plant Cell Rep 9:563–566

    Article  Google Scholar 

  • Miszalski Z, Ślesak I, Niewiadomska E, Bączek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Papadakis AI, Roubelakis-Angelakis KA (2002) Is oxidative stress responsible for plant protoplast recalcitrance? Plant Physiol Biochem 40:549–559

    Article  CAS  Google Scholar 

  • Papadakis AI, Siminis CI, Roubelakis-Angelakis KA (1999) Generation of active oxygen species in tobacco and grapevine protoplasts. Plant Physiol 121:197–205

    Article  CAS  PubMed  Google Scholar 

  • Papadakis AI, Siminis CI, Roubelakis-Angelakis KA (2001) Reduced antioxidant machinery correlates with suppression of totipotency in plant protoplasts. Plant Physiol 126:434–444

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro da Costa S, Soares A, Arnholdt-Shmitt B (2001) Studies on induction embryogenic globular structures in Opuntia ficus-indica. J Prof Assoc Cactus Dev 4:66–74

    Google Scholar 

  • Racchi ML, Bagnoli F, Balla I, Danti S (2001) Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.). Plant Cell Rep 20:169–174

    Article  CAS  Google Scholar 

  • Rossum MWPC, Alberda M, van der Plas LHW (1997) Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci 130:207–216

    Article  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalase in plants: gene structure, properties, regulation and expression. In: Scandalios JG (ed) Oxidative stress and molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 343–406

    Google Scholar 

  • Siminis CI, Kanellis AK, Roubelakis-Angelakis KA (1994) Catalase is differentially expressed in dividing and nondividing protoplasts. Plant Physiol 105:1375–1383

    CAS  PubMed  Google Scholar 

  • Ślesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture. Plant Sci 164:497–505

    Article  Google Scholar 

  • Ślesak I, Karpinska B, Surówka E, Miszalski Z, Karpinski S (2003a) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    Article  PubMed  Google Scholar 

  • Ślesak I, Libik M, Miszalski Z (2003b) Superoxide dismutase activity in callus from the C3-CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Tissue Org Cult 75:49–55

    Article  Google Scholar 

  • Thorpe TA (1980) Organogenesis in vitro: structural, physiological and biochemical aspects. Int Rev Cytol Suppl 112A:71–111

    Google Scholar 

  • Vranová E, Inzé D, van Bergusegem F (2002) Signal transduction during oxidative stress, J Exp Bot 53:1227–1236

    Article  Google Scholar 

  • Wang B, Lüttge U (1994) Induction and subculture of callus and regeneration of fertile plants of Mesembryanthemum crystallinum L. Pol J Environ Stud 3:55–57

    Google Scholar 

  • Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    CAS  PubMed  Google Scholar 

  • Yen HE, Zhang D, Lin J-H, Edwards GE, Ku MSB (1997) Salt-induced changes in protein composition in light-grown callus of Mesembryanthemum crystallinum. Physiol Plant 101:526–532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by Polish KBN grants 6P04C 00320, 6P04F 03420, 3P04C06423 and EU grant QoL-2001-Integr to the Institute of Plant Physiology Polish Academy of Science and Deutsche Forschungsanstalt für Luft-und Raumfahrt (DLR). The Deutsche Akademische Austauschdienst (DAAD) provided the growth chamber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Libik.

Additional information

Communicated by H. Lörz

This work is dedicated to Prof. Dr. Hubert Ziegler on his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libik, M., Konieczny, R., Pater, B. et al. Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep 23, 834–841 (2005). https://doi.org/10.1007/s00299-004-0886-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0886-8

Keywords