Skip to main content

Advertisement

Log in

Anti-tumor necrosis factor-alpha antibody treatment reduces serum CXCL16 levels in patients with rheumatoid arthritis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the change of serum chemokins levels of CXCL16, CX3CL1/Fractalkine, and CXCL10/interferon-gamma inducible protein-10 (IP-10) with rheumatoid arthritis (RA), by infliximab treatment. The effects of infliximab treatment were studied in 23 patients with RA, over a period of 30 weeks. The serum levels of CXCL16, Fractalkine, and IP-10, were measured at the baseline, just before initial treatment, and at 14 and 30 weeks after the initial treatment, with infliximab by ELISA. The higher levels of serum CXCL16 in the RA patients before treatment with infliximab significantly decreased at 14 and 30 weeks after the initial treatment with infliximab, but the serum Fractalkine and IP-10 levels did not decrease significantly. Infliximab treatment significantly lowered the serum levels of CXCL16 in patients with RA. CXCL16 is one of the crucial chemokines regulated by infliximab treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arend WP, Dayer JM (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 38:151–160

    Article  PubMed  CAS  Google Scholar 

  2. Maini RN, Taylor PC (2000) Anti-cytokine therapy for rheumatoid arthritis. Annu Rev Med 51:207–229

    Article  PubMed  CAS  Google Scholar 

  3. Taylor PC (2003) Anti-TNF alpha therapy for rheumatoid arthritis: an update. Intern Med 432:15–20

    Google Scholar 

  4. Cairns AP, Taggart AJ (2002) Anti-tumor necrosis factor therapy for severe inflammatory arthritis: two years of experience in Northern Ireland. Ulster Med J 71:101–105

    PubMed  CAS  Google Scholar 

  5. Zhang HG, Hyde K, Page GP, Brand JP, Zhou J, Yu S, Allison DB, Hsu HC, Mountz JD (2004) Novel tumor necrosis factor alpha-regulated genes in rheumatoid arthritis. Arthritis Rheum 50:420–431

    Article  PubMed  CAS  Google Scholar 

  6. Sato M, Miyazaki T, Nagaya T, Murata Y, Ida N, Maeda K, Seo H (1996) Antioxidants inhibit tumor necrosis factor-alpha mediated stimulation of interleukin-8, monocyte chemoattractant protein-1, and collagenase expression in cultured human synovial cells. J Rheumatol 23:432–438

    PubMed  CAS  Google Scholar 

  7. Chabaud M, Page G, Miossec P (2001) Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3 alpha production in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. J Immunol 167:6015–6020

    PubMed  CAS  Google Scholar 

  8. Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196

    Article  PubMed  CAS  Google Scholar 

  9. Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41:1258–1265

    Article  PubMed  CAS  Google Scholar 

  10. Pittoni V, Bombardieri M, Spinelli FR, Scrivo R, Alessandri C, Conti F, Spadaro A, Valesini G (2002) Anti-tumour necrosis factor (TNF) alpha treatment of rheumatoid arthritis (infliximab) selectively down regulates the production of interleukin (IL) 18 but not of IL12 and IL13. Ann Rheum Dis 61:723–725

    Article  PubMed  CAS  Google Scholar 

  11. Klimiuk PA, Sierakowski S, Domyslawska I, Chwiecko J (2004) Effect of repeated infliximab therapy on serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with rheumatoid arthritis. J Rheumatol 31:238–242

    PubMed  CAS  Google Scholar 

  12. Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR (2000) Macrophages in rheumatoid arthritis. Arthritis Res 2:189–202

    Article  PubMed  CAS  Google Scholar 

  13. Szekanecz Z, Kim J, Koch AE (2003) Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol 15:15–21

    Article  PubMed  CAS  Google Scholar 

  14. Koch AE, Kunkel SL, Burrows JC, Evanoff HL, Haines GK, Pope RM, Strieter RM (1991) Synovial tissue macrophage as a source of the chemotactic cytokine IL-8. J Immunol 147:2187–2195

    PubMed  CAS  Google Scholar 

  15. Koch AE, Kunkel SL, Shah MR, Hosaka S, Halloran MM, Haines GK, Burdick MD, Pope RM, Strieter RM (1995) Growth-related gene product alpha. A chemotactic cytokine for neutrophils in rheumatoid arthritis. J Immunol 155:3660–3666

    PubMed  CAS  Google Scholar 

  16. Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, Burdick MD, Pope RM, Strieter RM (1992) Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest 90:772–779

    Article  PubMed  CAS  Google Scholar 

  17. Robinson E, Keystone EC, Schall TJ, Gillett N, Fish EN (1995) Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol 101:398–407

    Article  PubMed  CAS  Google Scholar 

  18. Gough PJ, Garton KJ, Wille PT, Rychlewski M, Dempsey PJ, Raines EW (2004) A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16. J Immunol 172:3678–3685

    PubMed  CAS  Google Scholar 

  19. Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout TA, Broadway N, Hartmann D, Sedlacek R, Dietrich S, Muetze B, Schuster B, Kallen KJ, Saftig P, Rose-John S, Ludwig A (2004) The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol 172:6362–6372

    PubMed  CAS  Google Scholar 

  20. Nanki T, Shimaoka T, Hayashida K, Taniguchi K, Yonehara S, Miyasaka N (2005) Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum 52:3004–3014

    Article  PubMed  CAS  Google Scholar 

  21. van der Voort R, van Lieshout AW, Toonen LW, Sloetjes AW, van den Berg WB, Figdor CG, Radstake TR, Adema GJ (2005) Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum 52:1381–1391

    Article  PubMed  CAS  Google Scholar 

  22. Patel DD, Zachariah JP, Whichard LP (2001) CXCR3 and CCR5 ligands in rheumatoid arthritis synovium. Clin Immunol 98:39–45

    Article  PubMed  CAS  Google Scholar 

  23. Berthier-Vergnes O, Bermond F, Flacher V, Massacrier C, Schmitt D, Peguet-Navarro J (2005) TNF-alpha enhances phenotypic and functional maturation of human epidermal Langerhans cells and induces IL-12 p40 and IP-10/CXCL-10 production. FEBS Lett 579:3660–3668

    Article  PubMed  CAS  Google Scholar 

  24. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B, Woolf E, Alperin G, Culpepper J, Gutierrez-Ramos JC, Gearing D (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387:611–617

    Article  PubMed  CAS  Google Scholar 

  25. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  PubMed  CAS  Google Scholar 

  26. Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298–304

    Article  PubMed  CAS  Google Scholar 

  27. Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, Yonehara S (2000) Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 275:40663–40666

    Article  PubMed  CAS  Google Scholar 

  28. Wilbanks A, Zondlo SC, Murphy K, Mak S, Soler D, Langdon P, Andrew DP, Wu L, Briskin M (2001) Expression cloning of the STRL33/BONZO/TYMSTRligand reveals elements of CC, CXC, and CX3C chemokines. J Immunol 166:5145–5154

    PubMed  CAS  Google Scholar 

  29. Shashkin P, Simpson D, Mishin V, Chesnutt B, Ley K (2003) Expression of CXCL16 in human T cells. Arterioscler Thromb Vasc Biol 23:148–149

    Article  PubMed  CAS  Google Scholar 

  30. Hofnagel O, Luechtenborg B, Plenz G, Robenek H (2002) Expression of the novel scavenger receptor SR-PSOX in cultured aortic smooth muscle cells and umbilical endothelial cells. Arterioscler Thromb Vasc Biol 22:710–711

    Article  PubMed  CAS  Google Scholar 

  31. Hanaoka R, Kasama T, Muramatsu M, Yajima N, Shiozawa F, Miwa Y, Negishi M, Ide H, Miyaoka H, Uchida H, Adachi M (2003) A novel mechanism for the regulation of IFN-gamma inducible protein-10 expression in rheumatoid arthritis. Arthritis Res Ther 5:74–81

    Article  CAS  Google Scholar 

  32. Nishioji K, Okanoue T, Itoh Y, Narumi S, Sakamoto M, Nakamura H, Morita A, Kashima K (2001) Increase of chemokine interferon-inducible protein-10 (IP-10) in the serum of patients with autoimmune liver diseases and increase of its mRNA expression in hepatocytes. Clin Exp Immunol 123:271–279

    Article  PubMed  CAS  Google Scholar 

  33. Hachicha M, Naccache PH, McColl SR (1995) Inflammatory microcrystals differentially regulate the secretion of macrophage inflammatory protein 1 and interleukin 8 by human neutrophils: a possible mechanism of neutrophil recruitment to sites of inflammation in synovitis. J Exp Med 182:2019–2025

    Article  PubMed  CAS  Google Scholar 

  34. Jaramillo M, Godbout M, Naccache PH, Olivier M (2004) Signaling events involved in macrophage chemokine expression in response to monosodium urate crystals. J Biol Chem 279:52797–52805

    Article  PubMed  CAS  Google Scholar 

  35. Murakami Y, Akahoshi T, Kawai S, Inoue M, Kitasato H (2002) Antiinflammatory effect of retrovirally transfected interleukin-10 on monosodium urate monohydrate crystal-induced acute inflammation in murine air pouches. Arthritis Rheum 46:2504–1253

    Article  PubMed  CAS  Google Scholar 

  36. Murakami Y, Akahoshi T, Hayashi I, Endo H, Hashimoto A, Kono S, Kondo H, Kawai S, Inoue M, Kitasato H (2003) Inhibition of monosodium urate monohydrate crystal-induced acute inflammation by retrovirally transfected prostaglandin D synthase. Arthritis Rheum 48:2931–2941

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Kageyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kageyama, Y., Torikai, E. & Nagano, A. Anti-tumor necrosis factor-alpha antibody treatment reduces serum CXCL16 levels in patients with rheumatoid arthritis. Rheumatol Int 27, 467–472 (2007). https://doi.org/10.1007/s00296-006-0241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-006-0241-1

Keywords

Navigation