Skip to main content
Log in

The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The overall role of the Rcs phosphorelay in Proteus mirabilis is largely unknown. Previous work had demonstrated that the Rcs phosphorelay represses the flhDC operon and activates the minCDE cell division inhibition system. To identify additional cellular functions regulated by the Rcs phosphorelay, an analysis of RNA-seq data was undertaken. In this report, the results of the RNA-sequencing are discussed with an emphasis on the predicted roles of the Rcs phosphorelay in swarmer cell differentiation, motility, biofilm formation, and virulence. RcsB is shown to activate genes important for differentiation and fimbriae formation, while repressing the expression of genes important for motility and virulence. Additionally, to follow up on the RNA-Seq data, we demonstrate that an rcsB mutant is deficient in its ability to form biofilm and exhibits enhanced virulence in a Galleria mellonella waxworm model. Overall, these results indicate the Rcs regulon in P. mirabilis extends beyond flagellar genes to include those involved in biofilm formation and virulence. Furthermore, the information presented in this study may provide clues to additional roles of the Rcs phosphorelay in other members of the Enterobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allison C, Coleman N, Jones PL, Hughes C (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60:4740–4746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allison C, Emody L, Coleman N, Hughes C (1994) The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Alteri CJ, Himpsl SD, Pickens SR, Lindner JR, Zora JS, Miller JE, Arno PD, Straight SW, Mobley HLT (2013) Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathog 9(9):e1003608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armitage JP (1981) Changes in metabolic activity of Proteus mirabilis during swarming. J Gen Microbiol 125:445–450

    CAS  PubMed  Google Scholar 

  • Bahrani FK, Mobley HLT (1994) Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression. J Bacteriol 176(11):3412–3419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahrani FK, Massad G, Lockatell CV, Johnson DE, Russell RG, Warren JW, Mobley HLT (1994) Construction of an MR/P fimbrial mutant of Proteus mirabilis role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 176:3412–3419

    CAS  Google Scholar 

  • Belas R, Flaherty D (1994) Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. Gene 128:33–41

    Article  Google Scholar 

  • Belas R, Suvanasuthi R (2005) The Ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J Bacteriol 187(19):6789–6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belas R, Goldman M, Ashliman K (1995) Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol 177:823–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belas R, Schneider R, Melch M (1998) Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J Bacteriol 180(23):6126–6139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belas R, Manos J, Suvanasuthi R (2004) Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun 72(9):5159–5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berne C, Kysela DT, Brun YV (2010) A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77(4):815–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    Article  CAS  PubMed  Google Scholar 

  • Bode NJ, Debnath I, Kuan L, Schulfer A, Ty M, Pearson MM (2015) Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun 83(6):2542–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill JA, Quinlan-Walshe C, Gottesman S (1988) Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol 170:2599–2611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carballès F, Bertrand C, Bouche JP, Cam K (1999) Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsCrcsB. Mol Microbiol 34(3):442–548

    Article  PubMed  Google Scholar 

  • Castanie-Cornet MP, Cam K, Jacq A (2006) RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188:4264–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chippendale GR, Warren JW, Trifillis AL, Mobley HLT (1994) Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun 62(8):3115–3121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claret L, Hughes C (2000a) Functions of the subunits of FlhD2C2 transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol 303:467–478

    Article  CAS  PubMed  Google Scholar 

  • Claret L, Hughes C (2000b) Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J Bacteriol 182(3):833–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claret L, Hughes C (2002) Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. J Mol Biol 321(2):185–199

    Article  CAS  PubMed  Google Scholar 

  • Clemmer KM, Rather PN (2008a) Regulation of flhDC expression in Proteus mirabilis. Res Microbiol 158:295–302

    Article  CAS  Google Scholar 

  • Clemmer KM, Rather PN (2008b) The Lon protease regulates swarming motility and virulence gene expression in Proteus mirabilis. J Med Microbiol 57(8):931–937

    Article  CAS  PubMed  Google Scholar 

  • Davalos-Garcia M, Conter A, Toesca I, Gutierrez C, Cam K (2001) Regulation of osmC gene expression by the two component system rcsB-rcsC in Escherichia coli. J Bacteriol 183:5870–5876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649

    Article  PubMed  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield LI (1990) Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc Natl Acad Sci USA 87:1129–1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Venanzio G, Stepanenko TM, Garcia Vescovi E (2014) Serratia marcescens ShlA pre-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB. Infect Immun 82(9):3542–3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dienes L (1946) Reproductive processes in Proteus cultures. Proc Soc Exp Biol Med 63:265–270

    Article  CAS  PubMed  Google Scholar 

  • Dufour A, Furness RB, Hughes C (1998) Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol Microbiol 29:741–751

    Article  CAS  PubMed  Google Scholar 

  • Fedhila S, Buisson C, Dussurgent C, Serror P, Glomsk IJ, Leihl P, Lereclus C, Nielson-LeRoux C (2010) Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol 103:24–29

    Article  CAS  PubMed  Google Scholar 

  • Ferrières L, Clarke DJ (2003) The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50:1665–1682

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald DM, Bonocora RP, Wade JT (2014) Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet 10(10):e1004649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francez-Charlot A, Laugel B, VanGemert A, Dubarry N, WiorowskiF Castanié-Cornet MP, Gutierrez C, Cam K (2003) RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832

    Article  CAS  PubMed  Google Scholar 

  • Fraser GM, Hughes C (1999) Swarming motility. Curr Opin Microbiol 2:630–635

    Article  CAS  PubMed  Google Scholar 

  • Fraser GM, Claret L, Furness R, Gupta S, Hughes C (2002) Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiol. 148(7):2191–2201

    Article  CAS  Google Scholar 

  • Furness RB, Fraser GM, Hay NA, Hughes C (1997) Negative feedback from a Proteus Class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol 179:5585–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Calderon CB, Garcia-Quintanilla M, Casadesus J, Ramos-Morales F (2005) Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiol 151(Pt 2):579–588

    Article  CAS  Google Scholar 

  • Gervais FG, Drapeau GR (1992) Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12. J Bacteriol 174:8016–8022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gervais FG, Phoenix P, Drapeau GR (1992) The rcsB gene, a positive regulator of colonic acid biosynthesis in Escherichia coli, is also an activator of ftsZ expression. J Bacteriol 174:3964–3971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs KA, Urbanowski ML, Greenberg EP (2008) Genetic determinants of self-identity and social recognition in bacteria. Science 321(5886):256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesman S, Trisler P, Torres-Cabassa AS (1985) Regulation of capsular polysaccharide synthesis in Escherichia coli K12: characterization of three regulatory genes. J Bacteriol 162:1111–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gygi D, Bailey MJ, Allison C, Hughes C (1995) Requirement for FlhA in flagella assembly and swarm cell differentiation by Proteus mirabilis. Mol Microbiol 15:761–769

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T (2003) Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185(19):5735–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay NA, Tipper DJ, Gygi D, Hughes C (1999) A Novel Membrane Protein Influencing Cell Shape and Multicellular Swarming of Proteus mirabilis. J Bacteriol 181(7):2008–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinchliffe SJ, Howard SL, Huang YH, Clarke DJ, Wren BW (2008) The importance of the Rcs phosphorelay in the survival and pathogenesis of the enteropathogenic yersiniae. Microbiol 154(4):1117–1131

    Article  CAS  Google Scholar 

  • Hoeniger JFM (1965) Development of flagella by Proteus mirabilis. J Gen Microbiol 40:29–42

    Article  Google Scholar 

  • Howery KE, Clemmer KM, Simsek E, Kim M, Rather PN (2015) Regulation of the Min cell division inhibition system by the Rcs phosphorelay in Proteus mirabilis. J Bacteriol 197(15):2499–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184(1):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME (2008) Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21(1):26–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen AM, Lockatell CV, Johnson DE, Mobley HL (2003) Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun 71:3607–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen AM, Lockatell V, Johnson DE, Mobley HLT (2004) Mannose-resistant proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun 72:7294–7305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BV, Young R, Mahenthiralingam E, Stickler DJ (2004) Ultrastructure of Proteus mirabilis swarmer cell rafts and the role of swarming in catheter-associated urinary tract infections. Infect Immun 72:3941–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács AT (2016) Bacterial differentiation via the gradual activation of global regulators. Curr Genet 62:125–128

    Article  PubMed  CAS  Google Scholar 

  • Lehti TA, Heikkinen J, Korhonen TK, Westerlund-Wikström B (2012) The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli. J Bacteriol 194(13):3475–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Johnson DE, Mobley HLT (1999) Requirement of MrpH for mannose-resistant Proteus-like fimbriae-mediated hemagglutination by Proteus mirabilis. Infect Immun 67(6):2822–2833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Rasko DA, Lockatell CV, Johnson DE, Mobley HLT (2001) Repression of bacterial motility by a novel fimbrial gene product. EMBO J 20:4854–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaw SJ, Lia HC, Ho SW, Luh KT, Wang WB (2001) Characterisation of p-nitrophenylglycerol-resistant Proteus mirabilis super-swarming mutants. J Med Microbiol 50(12):1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Liaw SJ, Lai HC, Wang WB (2004) Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect Immun 72(12):6836–6845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lower BH, Yongsunthon R, Vellano FP, Lower SK (2005) Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. J Bacteriol 187(6):2127–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation. RprA Mol Microbiol 46:813–826

    Article  CAS  PubMed  Google Scholar 

  • Majdalani N, Heck M, Stout V, Gottesman S (2005) Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 187:6770–6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massad G, Lockattell CV, Johson DE, Mobley HLT (1994) Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary infection. Infect Immun 62:536–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsukawa M, Kunishima Y, Takahashi S, Takeyama K, Tsukamoto T (2005) Bacterial colonization on intraluminal surface of urethral catheter. Urology 65:440–444

    Article  PubMed  Google Scholar 

  • Mobley HL, Chippendale GR, Tenney JH, Mayrer AR, Crisp LJ, Penner JL, Warren JW (1988) MR/K hemagglutination of Providencia stuartii correlates with adherence to catheters and with persistence in catheter-associated bacteriuria. J Infect Dis 157(2):264–271

    Article  CAS  PubMed  Google Scholar 

  • Mobley HL, Chippendale GR, Swihart KG, Welch RA (1991) Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun 59:2036–2042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobley HL, Belas R, Lockatell V, Chippendale G, Trifillis AL, Johnson DE, Warren JW (1996) Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64(12):5332–5340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenstein RM, Clemmer KM, Rather PN (2010) Loss of the waaL O-antigen ligase prevents surface activation of the flagellar gene cascade in Proteus mirabilis. J Bacteriol 192(12):3213–3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrázek J, Xie S (2006) Pattern locator: a new tool for finding local sequence patterns in genomic DNA sequences. Bioinformatics 22:3099–3100

    Article  PubMed  CAS  Google Scholar 

  • Murherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T (2010) Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76:310–317

    Article  CAS  Google Scholar 

  • O’Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13(4):534–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson MM, Mobley HLT (2008) Repression of motility during fimbrial gene expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol Microbiol 69:548–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS, Luscombe NM, Abdellah Z, Arrosmith C, Atkin B, Chillingworth T, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Walker D, Whithead S, Thomson NR, Rather PN, Parkhill J, Mobley HL (2008) Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190(11):4027–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson MM, Rasko DA, Smith SN, Mobley HLT (2010) Transcriptome of swarming Proteus mirabilis. Infect Immun 78:2834–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson MM, Yep A, Smith SN, Mobley HL (2011) Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79(7):2619–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrino R, Scavone P, Umpiérrez A, Maskell DJ, Zunino P (2013) Proteus mirabilis uroepithelial cell adhesin (UCA) fimbria plays a role in the colonization of the urinary tract. Pathog Dis 67(2):104–107

    Article  CAS  PubMed  Google Scholar 

  • Phan V, Belas R, Gilmore BF, Ceri H (2008) ZapA, a virulence factor in a rat model of Proteus mirabilis-induced acute and chronic prostatitis. Infect Immun 76(11):4859–4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55(6):1722–1734

    Article  CAS  PubMed  Google Scholar 

  • Pristovsek P, Sengupta K, Lohr F, Schafer B, von Trebra MW, Ruterjans H, Bernhard F (2003) Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box. J Biol Chem 278:17752–17759

    Article  CAS  PubMed  Google Scholar 

  • Ramarao N, Nielsen-Leroux C, Lereclus D (2012) The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Visual Exp 11(70):e4392

    Google Scholar 

  • Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, Shapiro JA (1996) Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178:6525–6538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JA, Fussell EN, Kaack MB (1990) Bacterial adherence to urethral catheters. J Urol 144:264–269

    CAS  PubMed  Google Scholar 

  • Rocha S, Elias W, Cianciarullo A, Menezes M, Nara J, Piazza R, Silva M, Moreira C, Pelayo J (2007) Aggregative adherence of uropathogenic Proteus mirabilis to cultured epithelial cells. FEMS Immun Med Microbiol 51(2):319–326

    Article  CAS  Google Scholar 

  • Sabbuba N, Hughes G, Stickler DJ (2002) The migration of Proteus mirabilis and other urinary tract pathogens over Foley catheters. BJU Int 89(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Schwan WR, Shibata S, Aizawa S, Wolfe AJ (2007) The two-component response regulator RcsB regulates type 1 piliation in Escherichia coli. J Bacteriol 189(19):7159–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seed KD, Dennis JJ (2008) Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76:1267–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior BW, Loomes LM, Kerr MA (1991) The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol 35(4):203–207

    Article  CAS  PubMed  Google Scholar 

  • Stevenson LG, Rather PN (2006) A Novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J Bacteriol 188:7830–7839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stickler DJ, Lear JC, Morris NS, Macleod SM, Downer A, Cadd DH, Feast WJ (2006) Observations on the adherence of Proteus mirabilis onto polymer surfaces. J Appl Microbiol 100:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Stout V, Gottesman S (1990) RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172:659–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stout V, Torres-Cabassa A, Maurizi MR, Gutnick D, Gottesman S (1991) RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173:1738–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill G, Rather PN (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol Micobiol 51:437–446

    Article  CAS  Google Scholar 

  • Swihart KG, Welch RA (1990) Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun 58(6):1861–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T (2001) A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behavior. Mol Microbiol 40:440–450

    Article  CAS  PubMed  Google Scholar 

  • Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R (1999) ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32(4):825–836

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhao Y, McClelland M, Harshey RM (2007) The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 189(23):8447–8457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WB, Chen IC, Jiang SS, Chen HR, Hsu CY, Hseuh PR, Hsu WB, Liaw SJ (2008) Role of RppA in the regulation of polymyxin B susceptibility, swarming and virulence factor expression in Proteus mirabilis. Infect Immun 76:2051–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JE, Lutkenhaus J (1985) Overproduction of FtsZ induces minicell formation in E. coli. Cell 42:941–949

    Article  CAS  PubMed  Google Scholar 

  • Wehland M, Bernhard F (2000) The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275(10):7013–7020

    Article  CAS  PubMed  Google Scholar 

  • Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA (2013) Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. Mbio 4(4):e374–e413

    Article  CAS  Google Scholar 

  • Yakubu DE, Old DC, Senior BW (1989) The haemagglutinins and fimbriae of Proteus penneri. J Med Microbiol 30(4):279–284

    Article  CAS  PubMed  Google Scholar 

  • Zunino P, Piccini C, Legnani-Fajardo C (1994) Flagellate and non-flagellate Proteus mirabilis in the development of experimental urinary tract infection. Microb Pathog 16:379–385

    Article  CAS  PubMed  Google Scholar 

  • Zunino P, Geymonat L, Allen AG, Preston A, Sosa V, Maskell DJ (2001) New aspects of the role of MR/P fimbriae in Proteus mirabilis urinary tract infection. FEMS Immunol Med Microbiol 31:113–120

    Article  CAS  PubMed  Google Scholar 

  • Zunino P, Sosa V, Allen AG, Preston A, Schlapp G, Maskell DJ (2003) Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiol. 149(11):3231–3237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Merit Review award 1IOIBX001725 and by a Research Career Scientist award to P.N.R., both from the Department of Veterans Affairs. K.H. was supported by the Burroughs Wellcome Fund’s Molecules to Mankind program. The authors thank Lewis Jordan, PhD, for aid in the bioinformatic identification of RcsB-binding sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip N. Rather.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1521 kb)

Supplementary material 2 (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howery, K.E., Clemmer, K.M. & Rather, P.N. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet 62, 775–789 (2016). https://doi.org/10.1007/s00294-016-0579-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0579-1

Keywords

Navigation