Skip to main content
Log in

The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Heterotrimeric G-proteins play key roles in the transduction of extracellular signals to various downstream effectors in eukaryotes. In our previous study, a T-DNA insertional mutant A1-412, in which the promoter of a putative Gγ subunit gene MGG1 was disrupted, was impaired in asexual/sexual sporulation, appressorium formation, and pathogenicity in Magnaporthe oryzae. Here the roles of MGG1 in regulating fungal development and plant infection were further investigated and verified using a gene deletion strategy. Targeted gene deletion mutants of MGG1 exhibited similar phenotypes to those of A1-412. The Δmgg1 mutants were unable to differentiate appressorium on hydrophobic surfaces and nonpathogenic to susceptible hosts. The defects of the Δmgg1 mutants in appressorium formation were partially restored by adding exogenous cAMP or IBMX (a phosphodiesterase inhibitor), although the induced appressoria were still nonfunctional. Expressing Mgg1-GFP fusion protein in an Δmgg1 mutant could complement all phenotypes of the mutant, and bright GFP fluorescence was observed at the periphery of fungal cells, indicating that Mgg1 mainly localizes to plasma membrane. Quantitative RT-PCR analysis revealed that deletion of MGG1 resulted in a significant reduction in mRNA levels of the genes encoding Gα (MagA, MagB, and MagC), Gβ (Mgb1), and adenylate cyclase (Mac1). Moreover, intracellular cAMP accumulation was significantly reduced in Δmgg1 mutants compared to that in the wild-type strain. Taken together, our results suggested that Gγ subunit Mgg1 might act upstream of cAMP signaling pathway and play critical roles in regulation of conidiation, appressorium formation, mating, and plant infection in M. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245

    Article  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  CAS  PubMed  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ebbole DJ (2007) Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol 45:437–456

    Article  CAS  PubMed  Google Scholar 

  • Gummer JP, Trengove RD, Oliver RP, Solomon PS (2012) A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiol 12:131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschman JE, Jenness DD (1999) Dual lipid modification of the yeast Gγ subunit Ste18p determines membrane localization of Gβγ. Mol Cell Biol 19:7705–7711

    PubMed Central  CAS  PubMed  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering-host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    Article  CAS  PubMed  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krystofova S, Borkovich KA (2005) The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa. Eukaryot Cell 4:365–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landry S, Hoffman CS (2001) The git5 Gbeta and git11 Ggamma form an atypical Gbetagamma dimer acting in the fission yeast glucose/cAMP pathway. Genetics 157:1159–1168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YH, Dean RA (1993) cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YH, Dean RA (1994) Hydrophobicity of contact surface induces appressorium formation of Magnaporthe grisea. FEMS Microbiol Lett 115:71–76

    Article  Google Scholar 

  • Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yan X, Wang H, Liang S, Ma WB, Fang MY, Talbot NJ, Wang ZY (2010) MoRic8 is a novel component of G-protein signaling during plant infection by the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 23:317–331

    Article  PubMed  Google Scholar 

  • Li L, He L, Lai Y, Shao Y, Chen F (2014) Cloning and functional analysis of the Gβ gene Mgb1 and the Gγ gene Mgg1 in Monascus ruber. J Microbiol 52:35–43

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Wang ZY, Liu PJ, Li DB (2006) A Gγ subunit promoter T-DNA insertion mutant A1-412 of Magnaporthe grisea is defective in appressorium formation, penetration and pathogenicity. Chin Sci Bull 51:2214–2218

    Article  CAS  Google Scholar 

  • Liu S, Dean RA (1997) G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitive PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TK, Dean RA (1995) The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869–1878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Park G, Xu JR (2003) The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822–2835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo JA, Han KH, Yu JH (2005) Multiple roles of a heterotrimeric G protein γ-subunit in governing growth and development of Aspergillus nidulans. Genetics 171:81–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin KS, Kwon NJ, Yu JH (2009) Gβγ-mediated growth and developmental control in Aspergillus fumigatus. Curr Genet 55:631–641

    Article  CAS  PubMed  Google Scholar 

  • Skamnioti P, Gurr SJ (2007) Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19:2674–2689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  CAS  PubMed  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  CAS  PubMed  Google Scholar 

  • Xiao JZ, Watanabe T, Kamakura T, Ohshima A, Yamaguchi I (1994) Studies on cellular differientiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation of appressorium formation. Physiol Mol Plant Pathol 44:227–236

    Article  CAS  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    Article  CAS  PubMed  Google Scholar 

  • Xu JR, Urban M, Sweigard JA, Hamer JE (1997) The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact 10:187–194

    Article  CAS  Google Scholar 

  • Yang Q, Poole SI, Borkovich KA (2002) A G-protein β subunit required for sexual and vegetative development and maintenance of normal Gα protein levels in Neurospora crassa. Eukaryot Cell 1:378–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Basic Research and Development Program of China (2012CB114002), by Program for Changjiang Scholars and Innovative Research Team in University (IRT0943), and the Natural Science Foundation of China (Grant No. 30670073 and 31370172) to ZYW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyi Wang.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Que, Y., Liu, Y. et al. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae . Curr Genet 61, 641–651 (2015). https://doi.org/10.1007/s00294-015-0490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0490-1

Keywords

Navigation