Skip to main content
Log in

Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We targeted two CHSs (CHS5 and CHS7) for deletion analysis and found that both are required for normal hyphal growth and maximal disease of maize seedlings and ears. CHS5 and CHS7 encode a putative class V and class VII fungal chitin synthase, respectively; they are located adjacent to each other and are divergently transcribed. Fluorescent microscopy found that both CHS deficient strains produce balloon-shaped hyphae, while growth assays indicated that they were more sensitive to cell wall stressing compounds (e.g., the antifungal compound Nikkomycin Z) than wild type. Pathogenicity assays on maize seedlings and ears indicated that both strains were significantly reduced in their ability to cause disease. Our results demonstrate that both CHS5 and CHS7 are necessary for proper hyphal growth and pathogenicity of F. verticillioides on maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bacon CW, Hinton DM (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202

    Article  Google Scholar 

  • Bacon CW, Glenn AE, Yates IE (2008) Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev 27:411–446

    Article  CAS  Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1969) Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165:302–304

    Article  PubMed  CAS  Google Scholar 

  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233

    Article  PubMed  CAS  Google Scholar 

  • Bulawa CE (1993) Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol 47:505–534

    Article  PubMed  CAS  Google Scholar 

  • Butchko RAE, Plattner RD, Proctor RH (2003) FUM13 encodes a short dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. J Agric Food Chem 51:3000–3006

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Shaw JA, Mol PC, Bowers B, Choi WJ (1996) Chitin biosynthesis and morphogenetic processes. In: Brambl R, Marzluf GA (eds) The Mycota. Biochemistry and molecular biology, vol 3. Springer, Berlin, pp 243–276

    Google Scholar 

  • Capellini RA, Peterson JL (1965) Macroconidium formation in submerged cultures by a non-sporulating strain of Gibberella zeae. Mycologia 57:962–966

    Article  CAS  Google Scholar 

  • Choquer M, Boccara M, Goncalves IR, Soulié MC, Vidal-Cros A (2004) Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem 271:2153–2164

    Article  PubMed  CAS  Google Scholar 

  • Cid VA, Duran A, Del Rey FD, Synder MP, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386

    PubMed  CAS  Google Scholar 

  • Cohen E (1993) Chitin synthesis and degradation as targets for pesticide action. Arch Insect Biochem Physiol 22:245–261

    Article  PubMed  CAS  Google Scholar 

  • Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 48:471–497

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE, Busman M, Manandhar G, Jarosz AM, Manandhar HK, Proctor RH (2008) Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. J Agric Food Chem 56:5428–5436

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH (2008) Transformation-mediated complementation of a Fum gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant Microbe Interact 21:87–97

    Article  PubMed  CAS  Google Scholar 

  • Howard PC, Eppley RM, Stack ME, Warbritton A, Voss KA, Lorentzen RJ, Kovach RM, Bucci TJ (2001) Fumonisin B1 carcinogenicity is a two-year feeding study using F344 rats and B6C3F1 mice. Environ Health Perspect 109:277–282

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Lee H, Lee J, Kim KW, Yun S, Shim W, Lee Y (2009) Gibberella zeae chitin synthase genes, GzCHS5 and GzCHS7, are required for hyphal growth, perithecia formation, and pathogenicity. Curr Genet 55:449–549

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Yu YM, Rho YM, Park BC, Choi JH, Park HM, Maeng PJ (2005) Differential expression of the chsE gene encoding a chitin synthase of Aspergillus nidulans in response to developmental status and growth conditions. FEMS Microbiol Lett 249:121–129

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Plattner RD, Desjardins AE, Klittich CJR (1992) Fumonisin B1 production by strains from different mating populations of Gibberella fujikuroi (Fusarium section Liseola). Mycotoxicology 82:341–345

    CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Madrid MP, Di Pietro A, Roncero MIG (2003) Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defense compounds. Mol Microbiol 47:257–266

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Galgiani JN, Kroken S, Orbach MJ (2006) Coccidioides posadasii contains single chitin synthase genes corresponding to classes I to VII. Fungal Gen Biol 43:775–788

    CAS  Google Scholar 

  • Marek ET, Schardl CL, Smith DA (1989) Molecular transformation of Fusarium solani with an antibiotic resistance marker having no fungal DNA homology. Curr Genet 15:421–428

    Article  PubMed  CAS  Google Scholar 

  • Martín-Udíroz M, Madrid MP, Roncero MIG (2004) Role of chitin synthase genes in Fusarium oxysporum. Microbiology 150:3175–3187

    Article  PubMed  Google Scholar 

  • Martín-Udíroz M, Roncero MIG, Gonzalez-Reyes JA, Ruiz-Roldán C (2008) ChsVb, a class VII chitin synthase involved in septation is critical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 7:112–121

    Article  Google Scholar 

  • Mellado E, Dubreucq G, Mol P, Sarfati J, Paris S, Diaquin M, Holden DW, Rodriguez-Tudela JL, Latgé JP (2003) Cell wall biogenesis in a double chitin synthase mutant (chsG /chsE ) of Aspergillus fumigatus. Fungal Genet Biol 38:98–109

    Article  PubMed  CAS  Google Scholar 

  • Morgan WTJ, Elson LA (1934) A colorimetric method for the determination of N-acetylglucosamine and N-acetylchrondrosamine. Biochem J 28:988–995

    PubMed  CAS  Google Scholar 

  • Munkvold GP, Desjardins AE (1997) Fumonisins in maize: can we reduce their occurrence? Plant Dis 81:556–565

    Article  CAS  Google Scholar 

  • Munro CA, Gow NAR (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39:41–53

    PubMed  CAS  Google Scholar 

  • Nagahashi S, Sudoh M, Ono N, Sawada R, Yamaguchi E, Uchida Y, Mio T, Takagi M, Arisawa M, Yamada-Okabe H (1995) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J Biol Chem 270:13961–13967

    Article  PubMed  CAS  Google Scholar 

  • Niño-Vega GA, Carrero L, San-Blas G (2004) Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases. Med Mycol 42:51–57

    Article  PubMed  Google Scholar 

  • Plattner RD (1995) Detection of fumonisins produced in Fusarium moniliforme cultures by HPLC with electrospray MS and evaporative light scattering detectors. Nat Toxins 3:294–298

    Article  PubMed  CAS  Google Scholar 

  • Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112

    Article  PubMed  CAS  Google Scholar 

  • Richmond T (2000) Higher plant cellulose synthases. Genome Biol 1:3001–3005

    Article  Google Scholar 

  • Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, Gonzalez-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1:247–256

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Seefelder W, Humpf HU, Schwerdt G, Freudinger R, Gekle M (2003) Induction of apoptosis in cultured human proximal tubule cells by fumonisins and fumonisin metabolites. Toxicol Appl Pharmacol 192:146–153

    Article  PubMed  CAS  Google Scholar 

  • Shaw JA, Mol PC, Bowers B, Silverman SJ, Valdivieso MH, Duran A, Cabib E (1991) The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 114:111–123

    Article  PubMed  CAS  Google Scholar 

  • Silverman SJ, Sburlati A, Slater ML, Cabib E (1988) Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 85:4735–4739

    Article  PubMed  CAS  Google Scholar 

  • Soulié MC, Piffeteau A, Choquer M, Boccara M, Vidal-Cros A (2003) Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet Biol 40:38–46

    Article  PubMed  Google Scholar 

  • Soulié MC, Perino C, Piffeteau A, Choquer M, Malfatti P, Cimerman A, Kunz C, Boccara M, Vidal-Cross A (2006) Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cell Microbiol 8:1310–1321

    Google Scholar 

  • Takeshita N, Ohta A, Horiuchi H (2002) csmA, a gene encoding a class V chitin synthase with a myosin-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochem Biophys Res Commun 298:103–109

    Article  PubMed  CAS  Google Scholar 

  • Takeshita N, Yamashita S, Ohta A, Horuchi H (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59:1380–1394

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis. (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Turgeon BG, Garber RC, Yoder OC (1987) Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol 7:3297–3305

    PubMed  CAS  Google Scholar 

  • Vidal-Cros A, Boccara M (1998) Identification of four chitin synthase genes in the rice blast disease agent Magnaporthe grisea. FEMS Microbiol Lett 165:103–109

    PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Weber I, Aßmann D, Thines E, Steinberg G (2006) Polar localizing Class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225–242

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Sugui JA, Steinber G, eising HB (2007) A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Mol Plant Microbe Interact 12:1555–1567

    Article  Google Scholar 

  • Wicklow DT, Horn BW, Shotwell OL, Hesseltine CW, Caldwell RW (1988) Fungal interference with Aspergillus flavus infection and aflatoxin contamination of maize grown in a controlled environment. Phytopathology 78:68–74

    Article  Google Scholar 

  • Yates IE, Bacon CW, Hinton DM (1997) Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology. Plant Dis 81:723–728

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Amber M. Anderson, Nathan Deppe, and Debbie Shane for technical assistance. The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over the firms or similar products not mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy M. Larson.

Additional information

Communicated by B. Cormack.

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 55 kb)

Supplementary material (DOC 49 kb)

Supplemental Fig. 1

Alignment of conserved region 1 (Con1) found in the catalytic site of the eight putative F.verticillioides CHSs. Identical amino acids are shaded. Roman numerals above the alignment define the three sub domains (I–III) required for proper chitin synthase activity and classification. (TIFF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, T.M., Kendra, D.F., Busman, M. et al. Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity. Curr Genet 57, 177–189 (2011). https://doi.org/10.1007/s00294-011-0334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-011-0334-6

Keywords