Skip to main content

Advertisement

Log in

Identification of genes that are preferentially expressed in conidiogenous cell development of Metarhizium anisopliae by suppression subtractive hybridization

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The insect pathogenic fungus Metarhizium anisopliae is widely used as an insect biocontrol agent. The M. anisopliae conidium plays an important role in pathogenesis and disease transmission. The aim of this study was to identify genes whose expression is up-regulated during conidiogenous cell development. This is a powerful strategy for obtaining insight into the molecular events that regulate conidiation. We isolated genes that are preferentially expressed in the developing conidiophores of the common fungal locust pathogen M. anisopliae CQMa102 using suppression subtractive hybridization. Based on the results of cDNA array dot blotting, we identified 109 unique expressed sequence tags (ESTs) that were up-regulated more than fivefold during conidiophore formation. Among these 109 ESTs were 45 (41.3%) with significant similarity to NCBI annotated hypothetical proteins, 35 (32.1%) with low similarity to known or predicted genes that might represent novel genes, and 29 (26.6%) with significant similarity to known proteins involved in various cell and molecular processes, such as ell structure and function, cell metabolism, protein metabolism, stress response, nucleic acid metabolism, and cell cycle and growth. We confirmed the up-regulation of 11 randomly selected genes with real-time reverse transcriptase-PCR analysis. The results of this study provide a preliminary description of genes that may be involved in the molecular regulation of fungal conidiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362

    Article  PubMed  CAS  Google Scholar 

  • Adams TH, Wieser JK, Yu JH (1998) Asexual conidiation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aufauvre-Brown A, Mellado E, Gow NAR, Holden DW (1997) Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 21:141–152

    Article  PubMed  CAS  Google Scholar 

  • Bayram ¨O¨, Krappmann S, Seiler S, Vogt N, Braus GH (2008) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138

    Article  PubMed  CAS  Google Scholar 

  • Bonato MC, Silvia AM, Gomes SL, Maia JC, Juliani MH (1987) Differential expression of heat shock proteins and spontaneous synthesis of HSP70 during the life cycle of Blastocladiella emersonii. Eur J Biochem 163:211–220

    Article  PubMed  CAS  Google Scholar 

  • Boylan MT, Mirabito PM, Willett CE, Zimmerman CR, Timberlake WE (1987) Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol Cell Biol 7:3113–3118

    PubMed  CAS  Google Scholar 

  • Chabane S, Sarfati J, Ibrahim-Granet O, Du C, Schmidt C, Mouyna I, Prevost MC, Calderone R, Latgé JP (2006) Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl Env Microbiol 72:3259–3267

    Article  CAS  Google Scholar 

  • Charnley A, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, 2nd edn. Springer, Berlin, pp 159–187

    Google Scholar 

  • Cho EM, Liu L, Farmerie W, Keyhani NO (2006) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiol 152:2843–2854

    Article  CAS  Google Scholar 

  • Chow CM, RajBhandary UL (1993) Developmental regulation of the gene for formate dehydrogenase in Neurospora crassa. J Bacteriol 175:3703–3709

    PubMed  CAS  Google Scholar 

  • Clutterbuck AJ (1969) A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317–327

    PubMed  CAS  Google Scholar 

  • Cole GT (1986) Models of cell differentiation in conidial fungi. Microbiol Rev 50:95–132

    PubMed  CAS  Google Scholar 

  • Cole GT, Aldrich HC (1971) Ultrastructure of conidiogenesis in Scopulariopsis brevicaulis. Can J Bot 49:745–755

    Article  Google Scholar 

  • Collinge AJ, Trinci APJ (1974) Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa. Arch Microbiol 99:353–368

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dillon RJ, Charnley AK (1985) A technique for accelerating and synchronising germination of conidia of the entomopathogenic fungus Metarhizium anisopliae. Arch Microbiol 142:204–206

    Article  CAS  Google Scholar 

  • Fang W, Michael JB (2006) An Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycol Res 110:1165–1171

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Pei Y, Bidochka MJ (2007) A regulator of a G protein signalling (RGS) gene cag8 from the insect pathogenic fungus, Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 153:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Scully LR, Zhang L, Pei Y, Bidochka MJ (2008) Implication of a regulator of G-protein signaling (BbRGS1) in conidiation and conidial thermotolerance of the insect pathogenic fungus Beauveria bassiana. FEMS Microbiol Lett 279:146–156

    Article  PubMed  CAS  Google Scholar 

  • Fargues J, Smits N, Vidal C, Vey A, Vega F, Mercadier G (2002) Effect of liquid culture media on morphology, growth, propagule production, and pathogenic activity of the hyphomycete Metarhizium flavoviride. Mycopathologia 154:127–138

    Article  PubMed  Google Scholar 

  • Fujiwara M, Ichinomiya M, Motoyama T, Horiuchi H, Ohta A, Takagi M (2000) Evidence that the Aspergillus nidulans class I and class II chitin synthase genes, chsC and chsA, share critical roles in hyphal wall integrity and conidiophore development. J Biochem 127:359–366

    PubMed  CAS  Google Scholar 

  • Gooday GW, Trinci APJ (1980) Wall structure and biosynthesis in fungi. In: Gooday GW, Lloyd D, Trinci APJ (eds) The eukaryotic microbial cell. Cambridge University Press, London, pp 207–251

    Google Scholar 

  • Hafker T, Techel D, Steier G, Rensing L (1998) Differential expression of glucose-regulated (grp78) and heat-shock-inducible (hsp70) genes during asexual development of Neurospora crassa. Microbiology 144:37–43

    Article  PubMed  CAS  Google Scholar 

  • Hegedus DD, Bidochka MJ, Miranpuri GS, Khachatourians GG (1992) A comparison of the virulence, stability, and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Appl Microbiol Biotechnol 36:785–789

    Article  Google Scholar 

  • Hicks J, Yu JH, Keller N, Adams T (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA. G protein-dependent signaling pathway. EMBO J 16:4916–4923

    Article  PubMed  CAS  Google Scholar 

  • Huang C-YF, Ferrell JE (1996) Dependence of Mos-induced Cdc2 activation on MAP kinase function in a cell-free system. EMBOJ 15:2169–2173

    CAS  Google Scholar 

  • Hunter DM (2005) Mycopesticides as part of integrated pest management of locusts and grasshoppers. J Orthop Res 14:197–201

    Article  Google Scholar 

  • Ichinomiya M, Horiuchi H, Ohta A (2002a) Different functions of the class I and class II chitin synthase genes, chsC and chsA, are revealed by repression of chsB expression in Aspergillus nidulans. Curr Genet 42:51–58

    Article  PubMed  CAS  Google Scholar 

  • Ichinomiya M, Motoyama T, Fujiwara M, Takagi M, Horiuchi H, Ohta A (2002b) Repression of chsB expression reveals the functional importance of class IV chitin synthase gene chsD in hyphal growth and conidiation of Aspergillus nidulans. Microbiology 148:1335–1347

    PubMed  CAS  Google Scholar 

  • Issalya N, Chauveaua H, Aglevorb F, Farguesc J, Durandd A (2005) Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochem 40:1425–1430

    Article  CAS  Google Scholar 

  • Jenkins NE, Prior C (1993) Growth and formation of true conidia by Metarhizium flavoviride in a single liquid medium. Mycol Res 97:1489–1492

    Article  Google Scholar 

  • Kooyman C, Abdalla OM (1998) Application of Metarhizium flavoviride (Deuteromycotina: Hyphomycetes) in Sudan. Biocontrol Sci Technol 8:215–219

    Article  Google Scholar 

  • Langewald J, Kooyman C, Kpindou OKD, Lomer CJ, Dahmoud AO, Mohammed HO (1997) Field treatment of Desert Locust (Schistocerca gregaria Forskal) hoppers in the field in Mauritania with an oil formulation of the entomopathogenic fungus Metarhizium flavoviride. Biocontrol Sci Technol 7:603–611

    Article  Google Scholar 

  • Lee BN, Adams TH (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334

    Article  PubMed  CAS  Google Scholar 

  • Lee BN, Adams TH (1996) fluG & flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. EMBO J 15:299–309

    PubMed  CAS  Google Scholar 

  • Li BP, Bateman R, Li GY, Meng L, Zheng YRI (2000) Field trial on the control of grasshoppers in mountain grassland by oil formulation of Metarhizium flavoviride. Chin J Biol Control 16:145–147

    Google Scholar 

  • Li SJ, Bao DP, Yuen G, Harris SD, Calvo AM (2007) basA regulates cell wall organization and asexual/sexual sporulation ratio in Aspergillus nidulans. Genetics 176:243–253

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mewes HW, Albermann K, Heumann K, Liebl S, Pfeiffer F (1997) MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res 25:28–30

    Article  PubMed  CAS  Google Scholar 

  • Min N, Jae-Hyuk Y (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE 2:e970

    Article  CAS  Google Scholar 

  • Mirabito PM, Adams TH, Timberlake WE (1989) Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57:859–868

    Article  PubMed  CAS  Google Scholar 

  • Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    Article  PubMed  CAS  Google Scholar 

  • Mouyna I, Morelle W, Vai M, Monod M, Lechenne B, Fontaine T, Beauvais A, Sarfati J, Prevost MC et al (2005) Deletion of GEL2 encoding for a beta(1–3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol Microbiol 56:1675–1688

    Article  PubMed  CAS  Google Scholar 

  • Patterson NA, Kapoor M (1995) Developmentally regulated expression of heat shock genes in Leptosphaeria maculans. Can J Biochem 41:499–507

    CAS  Google Scholar 

  • Peng GX, Wang ZK, Yin YP, Zeng DY, Xia YX (2008) Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop prot 27:1244–1250

    Article  Google Scholar 

  • Prior C, Greathead DJ (1989) Biology control of locust: the potential for the exploitation of pathogens. FAO Plant Protect Bull 37:151–163

    Google Scholar 

  • Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. J Invertebr Pathol 90:55–58

    Article  PubMed  Google Scholar 

  • Robinow CF (1981) Nuclear behavior in conidial fungi. In: Cole GT, Kendrick B (eds) Biology of conidial fungi, vol 2. Academic Press, Inc., New York, pp 357–390

    Google Scholar 

  • Samuels KD, Pinnock DE, Allsopp PG (1989) The potential of Metarhizium anisopliae (Metschnikoff) Sorokin (Deutermycotina, Hyphomycetes) as a biological control-agent of Inopus rubriceps (Macquart) (Diptera, Stratiomyidae). J Aust Entomol Soc 28:69–74

    Article  Google Scholar 

  • Shim WB, Dunkle LD (2003) CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol Plant Microbe In 16:760–768

    Article  CAS  Google Scholar 

  • Small CL, Bidochka MJ (2005) Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109:307–313

    Article  PubMed  CAS  Google Scholar 

  • Springer ML (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. Bioessays 15:365–374

    Article  PubMed  CAS  Google Scholar 

  • Sun JZ, Fuxa JR, Henderson G (2003) Effects of virulence, sporulation, and temperature on Metarhizium anisopliae and Beauveria bassiana laboratory transmission in Coptotermes formosanus. J Invertebr Pathol 84:38–46

    Article  PubMed  Google Scholar 

  • Takeshita N, Yamashita S, Ohta A, Horiuchi H (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59:1380–1394

    Article  PubMed  CAS  Google Scholar 

  • Tang QY, Feng MG (2002) DPS data processing system for practical analysis. Science Process, Beijing, pp 620–648

    Google Scholar 

  • Wu J, Ridgway HJ, Carpenter MA, Glare TR (2008) Identification of novel genes associated with conidiation in Beauveria bassiana with suppression subtractive hybridization. Mycologia 100:20–30

    Article  PubMed  CAS  Google Scholar 

  • Zhang SZ, Xia YX (2008) Identification of genes preferentially expressed during microcycle conidiation of Metarhizium anisopliae using suppression subtractive hybridization. FEMS Microbiol Lett 286:71–77

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Tech 17:879–920

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Natural Science Foundation of China (No. 30170630), the Key Natural Science Foundation of Chongqing, China (No. 8564), and the National High Technology Research and Development Program of China (863 Program, No. 2006AA10A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxian Xia.

Additional information

Communicated by J. Heitman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, G., Xie, L., Hu, J. et al. Identification of genes that are preferentially expressed in conidiogenous cell development of Metarhizium anisopliae by suppression subtractive hybridization. Curr Genet 55, 263–271 (2009). https://doi.org/10.1007/s00294-009-0242-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0242-1

Keywords

Navigation