Skip to main content
Log in

Comparison between polyethylene glycol- and polyethylenimine-mediated transformation of Aspergillus nidulans

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Genetic transformation of many filamentous fungi is carried out by a protocol that utilizes polyethylene glycol (PEG) and calcium ion (Ca2+). This method has remained practically unchanged for more than 20 years, but the roles these molecules play are not definitively understood. To gain a better understanding, we have compared PEG transformation to a protocol using polyethylenimine (PEI) that is the basis for non-viral transfection in mammals and which has a well established molecular model for assisting DNA uptake. Protoplasts of Aspergillus nidulans could be transformed in the presence of Ca2+ with a relatively high ratio of PEI to DNA molecules. By comparing PEI and PEG in terms of interaction with DNA, fungal protoplasts, and response to different transformation conditions, we propose that the role of PEG is most likely to function after transforming DNA is incorporated into protoplasts, rather than the accepted view that it functions outside of the cell. Confirmation that protoplast fusion was not involved in DNA uptake is consistent with this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  PubMed  CAS  Google Scholar 

  • Anne J, Peberdy JF (1975) Conditions for induced fusion of fungal protoplasts in polyethylene glycol solutions. Arch Microbiol 105:201–205

    Article  PubMed  CAS  Google Scholar 

  • Ballance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 112:284–289

    Article  PubMed  CAS  Google Scholar 

  • Banerjee P, Weissleder R, Bogdanov A Jr (2006) Linear polyethyleneimine grafted to a hyperbranched poly(ethylene glycol)-like core: a copolymer for gene delivery. Bioconjug Chem 17:125–131

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. Embo J 14:3206–3214

    PubMed  CAS  Google Scholar 

  • Burgers PM, Percival KJ (1987) Transformation of yeast spheroplasts without cell fusion. Anal Biochem 163:391–397

    Article  PubMed  CAS  Google Scholar 

  • Case ME, Schweizer M, Kushner SR, Giles NH (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci USA 76:5259–5263

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty BN, Kapoor M (1990) Transformation of filamentous fungi by electroporation. Nucleic Acids Res 18:6737

    Article  PubMed  CAS  Google Scholar 

  • Dauty E, Verkman AS (2005) Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem 280:7823–7828

    Article  PubMed  CAS  Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • de Vries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl Environ Microbiol 69:4455–4462

    Article  PubMed  Google Scholar 

  • Dunlap DD, Maggi A, Soria MR, Monaco L (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 25:3095–3101

    Article  PubMed  CAS  Google Scholar 

  • Fiddy C, Trinci AP (1976) Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol 97:169–184

    PubMed  CAS  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170

    PubMed  CAS  Google Scholar 

  • Gems D, Johnstone IL, Clutterbuck AJ (1991) An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98:61–67

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  PubMed  CAS  Google Scholar 

  • Harashima S, Takagi A, Oshima Y (1984) Transformation of protoplasted yeast cells is directly associated with cell fusion. Mol Cell Biol 4:771–778

    PubMed  CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Eckert SE, Krappmann S, Braus GH (2001) Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetics 157:141–147

    PubMed  CAS  Google Scholar 

  • Kafer E (1965) Origins of translocations in Aspergillus nidulans. Genetics 52:217–232

    PubMed  CAS  Google Scholar 

  • Kafer E, Scott BR, Dorn GL, Stafford R (1982) Aspergillus nidulans: systems and results of tests for chemical induction of mitotic segregation and mutation. I. Diploid and duplication assay systems. A report of the U.S. EPA Gene-Tox Program. Mutat Res 98:1–48

    PubMed  CAS  Google Scholar 

  • Kaminskyj SG, Hamer JE (1998) hyp loci control cell pattern formation in the vegetative mycelium of Aspergillus nidulans. Genetics 148:669–680

    PubMed  CAS  Google Scholar 

  • Kawai S et al (2004) Molecular insights on DNA delivery into Saccharomyces cerevisiae. Biochem Biophys Res Commun 317:100–107

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Kogure K, Akita H, Harashima H (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58:32–45

    Article  PubMed  CAS  Google Scholar 

  • Koukaki M, Giannoutsou E, Karagouni A, Diallinas G (2003) A novel improved method for Aspergillus nidulans transformation. J Microbiol Methods 55:687–695

    Article  PubMed  CAS  Google Scholar 

  • Kubodera T, Yamashita N, Nishimura A (2000) Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem 64:1416–1421

    Article  PubMed  CAS  Google Scholar 

  • Kunath K et al (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89:113–125

    Article  PubMed  CAS  Google Scholar 

  • Lentz BR (1994) Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem Phys Lipids 73:91–106

    Article  PubMed  CAS  Google Scholar 

  • Louie D, Serwer P (1994) Quantification of the effect of excluded volume on double-stranded DNA. J Mol Biol 242:547–558

    Article  PubMed  CAS  Google Scholar 

  • May GS (1989) The highly divergent beta-tubulins of Aspergillus nidulans are functionally interchangeable. J Cell Biol 109:2267–2274

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Mohan PM, Chary KV (2007) Magnesium promotes structural integrity and conformational switching action of a calcium sensor protein. Biochemistry 46:3835–3845

    Article  PubMed  CAS  Google Scholar 

  • Natsume T, Egusa M, Kodama M, Johnson R, Itoh T, Itoh Y (2004) An appropriate increase in the transcription of Aspergillus nidulans uvsC improved gene targeting efficiency. Biosci Biotechnol Biochem 68:1649–1656

    Article  PubMed  CAS  Google Scholar 

  • Nelson G et al (2004) Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol Microbiol 52:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7:992–1009

    Article  PubMed  CAS  Google Scholar 

  • Neukamm B, Stahl U, Lang C (2002) Endocytosis is involved in DNA uptake in yeast. Biochim Biophys Acta 1572:67–76

    PubMed  CAS  Google Scholar 

  • Olmedo-Monfil V, Cortes-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation: key concepts and applications. Methods Mol Biol 267:297–314

    PubMed  CAS  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  PubMed  CAS  Google Scholar 

  • Remy-Kristensen A, Clamme JP, Vuilleumier C, Kuhry JG, Mely Y (2001) Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim Biophys Acta 1514:21–32

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Saupe SJ, Glass NL (1997) Allelic specificity at the het-c heterokaryon incompatibility locus of Neurospora crassa is determined by a highly variable domain. Genetics 146:1299–1309

    PubMed  CAS  Google Scholar 

  • Shin JY et al (2005) Low molecular weight polyethylenimine for efficient transfection of human hematopoietic and umbilical cord blood-derived CD34+ cells. Biochim Biophys Acta 1725:377–384

    PubMed  CAS  Google Scholar 

  • Sonawane ND, Szoka FC Jr, Verkman AS (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278:44826–44831

    Article  PubMed  CAS  Google Scholar 

  • van Solingen P, van der Plaat JB (1977) Fusion of yeast spheroplasts. J Bacteriol 130:946–947

    PubMed  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Austen Ganley at National Institute of Genetics, Japan, and Dr. Richard Johnson at AgResearch Grasslands, New Zealand for critical readings of the manuscript. Our appreciation is also forwarded to Dr. Mikihiro Yamamoto in Okayama University and Dr. Motoichiro Kodama in Tottori University, Japan, for their critical help in the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Itoh.

Additional information

Communicated by Gerhard Braus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwano, T., Shirataki, C. & Itoh, Y. Comparison between polyethylene glycol- and polyethylenimine-mediated transformation of Aspergillus nidulans . Curr Genet 54, 95–103 (2008). https://doi.org/10.1007/s00294-008-0204-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0204-z

Keywords

Navigation