Skip to main content
Log in

Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The ability to perform multiple gene deletions is an important tool for conducting functional genomics. We report the development of a sequential gene deletion protocol for the filamentous fungus Aspergillus nidulans using the Cre/loxP recombinase system of bacteriophage P1. A recyclable genetic marker has been constructed by incorporating loxP direct repeats either side of the Neurospora crassa pyr-4 gene (encodes orotidine 5′-monophosphate decarboxylase) which is able to complement the A. nidulans pyrG89 mutation. This construct can be directed to delete specific genomic regions by attaching flanking sequences corresponding to the desired target. The pyr-4 marker can subsequently be eliminated by Cre-catalysed recombination between the loxP sites. The recombinase gene (cre), which has been placed under the control of the A. nidulans xlnA (xylanase A) gene promoter thus providing a means to switch on (xylose induction) or off (glucose repression) recombinase expression, has been integrated into the genome of an A. nidulans mutant strain defective in orotidine 5′-monophosphate decarboxylase activity (pyrG89). We demonstrate the effectiveness of our deletion system by sequentially deleting two genes, yellow (yA) and white (wA), involved in the synthesis of conidial pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    PubMed  CAS  Google Scholar 

  • Ballance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 112:284–289

    Article  PubMed  CAS  Google Scholar 

  • Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36:321–331

    Article  PubMed  CAS  Google Scholar 

  • Clutterbuck AJ (1972) Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Microbiol 70:423–435

    PubMed  CAS  Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56

    PubMed  CAS  Google Scholar 

  • d’Enfert C (1996) Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30:76–82

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Cañón JM, Peñalva MA (1995) Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol Gen Genet 246:110–118

    Article  PubMed  Google Scholar 

  • Fincham JRS (1989) Transformation in fungi. Microbiol Rev 53:148–170

    PubMed  CAS  Google Scholar 

  • Forment JV, Flipphi M, Ramón D, Ventura L, MacCabe AP (2006) Identification of the mstE gene encoding a glucose-inducible, low affinity glucose transporter in Aspergillus nidulans. J Biol Chem 281:8339–8346

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, d’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  PubMed  CAS  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed  Google Scholar 

  • Hartl L, Seiboth B (2005) Sequential gene deletions in Hypocrea jecorina using a single blaster cassette. Curr Genet 48:204–211

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208

    Article  PubMed  CAS  Google Scholar 

  • Krappmann S, Braus GH (2003) Deletion of Aspergillus nidulans aroC using a novel blaster module that combines ET cloning and marker rescue. Mol Genet Genomics 268:675–683

    PubMed  CAS  Google Scholar 

  • Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Lamy B, Davies J (1991) Isolation and nucleotide sequence of the Aspergillus restrictus gene coding for the ribonucleolytic toxin restrictocin and its expression in Aspergillus nidulans: the leader sequence protects producing strains from suicide. Nucleic Acids Res 19:1001–1006

    Article  PubMed  CAS  Google Scholar 

  • MacCabe AP, Orejas M, Pérez-González JA, Ramón D (1998) Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. J Bacteriol 180:1331–1333

    PubMed  CAS  Google Scholar 

  • Martinelli SD, Kinghorn JR (eds) (1994) Aspergillus: 50 years on. Elsevier, Amsterdam

  • Mayorga ME, Timberlake WE (1992) The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol Gen Genet 235:205–212

    Article  PubMed  CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2005) A versatile and efficient gene targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12258

    Article  PubMed  CAS  Google Scholar 

  • Odell J, Caimi P, Sauer B, Russell S (1990) Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223:369–378

    Article  PubMed  CAS  Google Scholar 

  • O’Hara EB, Timberlake WE (1989) Molecular characterisation of the Aspergillus nidulans yA locus. Genetics 121:249–254

    PubMed  CAS  Google Scholar 

  • Orejas M, MacCabe AP, Pérez González JA, Kumar S, Ramón D (1999) Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31:177–184

    Article  PubMed  CAS  Google Scholar 

  • Pérez-González JA, De Graaff LH, Visser J, Ramón D (1996) Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes. Appl Environ Microbiol 62:2179–2182

    PubMed  Google Scholar 

  • Pérez-González JA, van Peij NN, Bezoen A, MacCabe AP, Ramón D, De Graaff LH (1998) Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a beta-xylosidase. Appl Environ Microbiol 64:1412–1419

    PubMed  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton WJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  PubMed  CAS  Google Scholar 

  • Rambosek JA, Kinsey JA (1984) An unstable mutant gene of the am locus of Neurospora results from a small duplication. Gene 27:101–107

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    PubMed  CAS  Google Scholar 

  • Sauer B, Henderson N (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 17:147–161

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts P (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet 9:376–385

    Article  PubMed  CAS  Google Scholar 

  • Specht CA, DiRusso CC, Novotny CP, Ullrich RC (1982) A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem 119:158–163

    Article  PubMed  CAS  Google Scholar 

  • Storms R, Zheng Y, Li H, Sillaots S, Martínez-Pérez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204

    Article  PubMed  CAS  Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    Article  PubMed  CAS  Google Scholar 

  • Turner G (1994) Vectors for genetic manipulation. In: Martinelli SD, Kinghorn JR (eds) Aspergillus: 50 years on. Elsevier, Amsterdam, pp 641–665

    Google Scholar 

  • Vetter D, Andrews BJ, Roberts-Beatty L, Sadowski PD (1983) Site-specific recombination of yeast 2-micron DNA in vitro. Proc Natl Acad Sci USA 80:7284–7288

    Article  PubMed  CAS  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. C. Scazzocchio for drawing our attention to the report on the am gene in N. crassa. This work was supported by grants from the EU (QLK3-CT99-00729) and the Ministerio de Educación y Ciencia (AGL2002-01906). JVF is a recipient of a grant from the Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. MacCabe.

Additional information

Communicated by C. d'Enfert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forment, J.V., Ramón, D. & MacCabe, A.P. Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50, 217–224 (2006). https://doi.org/10.1007/s00294-006-0081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0081-2

Keywords

Navigation