Skip to main content
Log in

Residues of the yeast ALR1 protein that are critical for Magnesium uptake

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mutagenesis was used to study the function by the ALR1 (aluminium resistance) gene, which encodes the major Mg2+ uptake system in yeast. Truncation of Alr1 showed that the N-terminal 239 amino acids and the C-terminal 53 amino acids are not essential for magnesium uptake. Random PCR mutagenesis was undertaken of the C-terminal part of ALR1 that is homologous to the bacterial CorA magnesium transport family. The mutants with the most severe phenotype all had amino acid changes in a small region containing the putative transmembrane domains. Eighteen single amino acid mutants in this critical region were classified into three categories for magnesium uptake: no, low and moderate activity. Seventeen of the 18 mutants expressed a cross-reacting band of similar size and intensity as wild-type Alr1. Conservative mutations that reduced or inactivated uptake led us to identify Ser729, Ile746 and Met762 (part of the conserved GMN motif) as critical amino acid residues in Alr1. High expression of inactive mutants inhibited the capability of wild-type Alr1 to transport magnesium, consistent with Alr1 forming homo-oligomers. The results confirm the classification of ALR1 as a member of the CorA family of magnesium transport genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TM:

transmembrane

YPD:

yeast extract peptone dextrose

YPDM:

YPD plus high magnesium

LPM:

low pH low magnesium

SC:

synthetic complete

OD:

Optical density

HA:

Haemaglutenin

ER:

endoplasmic reticulum

PCR:

Polymerase chain reaction

References

  • Bonneaud N, Ozierkalogeropoulos O, Li GY, Labouesse M, Minviellesebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded Saccharomyces-cerevisiae Escherichia-coli shuttle vectors. Yeast 7:609–615

    Article  PubMed  CAS  Google Scholar 

  • Bui DM, Gregan J, Jarosch E, Ragnini A, Schweyen RJ (1999) The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J Biol Chem 274:20438–20443

    Article  PubMed  CAS  Google Scholar 

  • Caldwell AM, Smith RL (2003) Membrane topology of the ZntB efflux system of Salmonella enterica Serovar Typhimurium. J Bacteriol 185:374–376

    Article  PubMed  CAS  Google Scholar 

  • Casagrande R, Stern P, Diehn M, Shamu C, Osario M, Zuniga M, Brown PO, Ploegh H (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell 5:729–735

    Article  PubMed  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JaoM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Drummond RSM, Tutone A, Li Y-C, Gardner RC (2005) A putative magnesium transporter AtMRS2–11 is localized to the chloroplastic envelope membrane. Plant Sci (in press)

  • Ezaki B, Sivaguru M, Ezaki Y, Matsumoto H, Gardner RC (1999) Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI1 gene derived from plants. FEMS Microbiol Lett 171:81–87

    Article  PubMed  CAS  Google Scholar 

  • Ezquerra M, Carnero C, Blesa R, Gelpi JL, Ballesta F, Oliva R (1999) A presenilin 1 mutation (Ser169Pro) associated with early-onset AD and myoclonic seizures. Neurology 52:566–570

    PubMed  CAS  Google Scholar 

  • Fromant M, Blanquet S, Plateau P (1995) Direct random mutagenesis of gene-sized DNA fragments using polymerase chain-reaction. Anal Biochem 224:347–353

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann GF, Rothstein A (1968) The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim Biophys Acta 163:325–330

    Article  PubMed  CAS  Google Scholar 

  • Gardner RC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6:263–267

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  PubMed  CAS  Google Scholar 

  • Graschopf A, Stadler JA, Hoellerer MK, Eder S, Sieghardt M, Kohlwein SD, Schweyen RJ (2001) The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation. J Biol Chem 276:16216–16222

    Article  PubMed  CAS  Google Scholar 

  • Grubbs RD, Snavely MD, Paul Hmiel S, Maguire ME (1989) [36] Magnesium transport in eukaryotic and prokaryotic cells using magnesium-28 ion. Methods in enzymology, vol 173. Academic, New York, pp 546–563

  • Hmiel SP, Snavely MD, Miller CG, Maguire ME (1986) Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168:1444–1450

    PubMed  CAS  Google Scholar 

  • Kehres DG, Lawyer CH, Maguire ME (1998) The CorA magnesium transporter gene family. Microb Comp Genomics 3:151–169

    PubMed  CAS  Google Scholar 

  • Kehres DG, Maguire ME (2002) Structure, properties and regulation of magnesium transport proteins. BioMetals 15:261–270

    Article  PubMed  CAS  Google Scholar 

  • Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen RJ, Schweigel M (2003) Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J 22:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast 16:857–860

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Pena MMO, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Neigeborn L, Kaufman RJ (2003) The unfolded protein response is required for haploid tolerance in yeast. J Biol Chem 278:11818–11827

    Article  PubMed  CAS  Google Scholar 

  • Li L, Tutone AF, Drummond RS, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    Article  PubMed  CAS  Google Scholar 

  • Liu GJ, Martin DK, Gardner RC, Ryan PR (2002) Large Mg(2+)-dependent currents are associated with the increased expression of ALR1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 213:231–237

    Article  PubMed  CAS  Google Scholar 

  • Longtine MS, McKenzie A, III, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  PubMed  CAS  Google Scholar 

  • MacDiarmid CW, Gardner RC (1996) A1 toxicity in yeast. A role for Mg? Plant Physiol 112:1101–1109

    CAS  Google Scholar 

  • MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273:1727–1732

    Article  PubMed  CAS  Google Scholar 

  • Marini AM, Springael JY, Frommer WB, Andre B (2000) Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol Microbiol 35:378–385

    Article  PubMed  CAS  Google Scholar 

  • Monahan BJ, Unkles SE, Tsing IT, Kinghorn JR, Hynes MJ, Davis MA (2002) Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA. Fungal Genet Biol 36:35–46

    Article  PubMed  CAS  Google Scholar 

  • Muhlrad D, Hunter R, Parker R (1992) A rapid method for localized mutagenesis of yeast genes. Yeast 8:79–82

    Article  PubMed  CAS  Google Scholar 

  • Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  PubMed  CAS  Google Scholar 

  • Pena MMO, Puig S, Thiele DJ (2000) Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 275:33244–33251

    Article  PubMed  CAS  Google Scholar 

  • Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Monk BC, Villalba JM, Montesinos C, Weiler EW (1993) Epitope mapping and accessibility of immunodominant regions of yeast plasma membrane H(+)-ATPase. Eur J Biochem 212:737–744

    Article  PubMed  CAS  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Pease LG (1980) Reverse turns in peptides and proteins. Crc Crit Rev Biochem 8:315–399

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Banks JL, Snavely MD, Maguire ME (1993) Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem 268:14071–14080

    PubMed  CAS  Google Scholar 

  • Smith RL, Szegedy MA, Kucharski LM, Walker C, Wiet RM, Redpath A, Kaczmarek MT, Maguire ME (1998) The CorA Mg2+ transport protein of Salmonella typhimurium. Mutagenesis of conserved residues in the third membrane domain identifies a Mg2+ pore. J Biol Chem 273:28663–28669

    Article  PubMed  CAS  Google Scholar 

  • Svetlov V, Cooper TG (1998) Efficient PCR-based random mutagenesis of sub-genic (100 bp) DNA fragments. Yeast 14:89–91

    Article  PubMed  CAS  Google Scholar 

  • Szegedy MA, Maguire ME (1999) The CorA Mg(2+) transport protein of Salmonella typhimurium. Mutagenesis of conserved residues in the second membrane domain. J Biol Chem 274:36973–36979

    Article  PubMed  CAS  Google Scholar 

  • Warren MA, Kucharski LM, Veenstra A, Shi L, Grulich PF, Maguire ME (2004) The CorA Mg2+ transporter is a homotetramer. J Bacteriol 186:4605–4612

    Article  PubMed  CAS  Google Scholar 

  • Worlock AJ, Smith RL (2002) ZntB is a novel Zn2+ transporter in Salmonella enterica serovar Typhimurium. J Bacteriol 184:4369–4373

    Article  PubMed  CAS  Google Scholar 

  • Yerushalmi H, Lebendiker M, Schuldiner S (1996) Negative dominance studies demonstrate the oligomeric structure of EmrE, a multidrug antiporter from Escherichia coli. J Biol Chem 271:31044–31048

    Article  PubMed  CAS  Google Scholar 

  • Zsurka G, Gregan J, Schweyen RJ (2001) The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics 72:158–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Keith Richards for technical assistance, Mark Longtine (Oklahoma) for supplying plasmids and Ramon Serrano (Valencia) for supplying PMA1 antibody, and Colin MacDiarmid and Alok Mitra for reviewing versions of the manuscript. J-M L. was the recipient of an Overseas Scholarship from the Korean government during his PhD. Funding for this project was provided by a grant from the New Zealand Marsden Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Gardner.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Jm., Gardner, R.C. Residues of the yeast ALR1 protein that are critical for Magnesium uptake. Curr Genet 49, 7–20 (2006). https://doi.org/10.1007/s00294-005-0037-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0037-y

Keywords

Navigation