Skip to main content

Advertisement

Log in

Activity of the yeast Tat2p tryptophan permease is sensitive to the anti-tumor agent 4-phenylbutyrate

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

4-Phenylbutyrate (PB) induces differentiation and is being intensively studied as a treatment for brain, prostate, breast, and hematopoietic cancer. While many different primary targets for PB have been proposed, the mechanism by which it causes cellular differentiation remains unknown. To identify the primary cellular target, we investigated its effects on Saccharomyces cerevisiae and showed that it inhibits tryptophan transport. We show here that PB and sorbic acid induce an ubiquitin-dependent turnover of the tryptophan permease Tat2p. However, the inhibition of transport is not a consequence of the loss of Tat2p, since it also occurs when turnover is prevented by deleting the Tat2p ubiquitination sites. When we tested the effects of PB and other growth inhibitory agents on the growth of amino acid auxotrophs, we found that several auxotrophs are hypersensitive to a number of chemically unrelated agents, including PB and some, but not all, weak acids; and this sensitivity is due to the inhibition of amino acid transport. For the inhibitory weak acids, inhibition is not confined to aromatic amino acid auxotrophs, nor is it a general weak acid stress response, since the degree of inhibition is independent of weak acid hydrophobicity and pKa. Our results show that diverse agents affect the activity of the Tat2p permease rather than its stability and suggest the hypothesis that the anti-neoplastic action of PB is due to a decrease in the activity of surface receptors or other membrane proteins needed to maintain the transformed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  CAS  PubMed  Google Scholar 

  • Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases tat1 and tat2 by ubiquitin ligase rsp5 and its binding proteins, bul1 and bul2. Mol Cell Biol 23:7566–7584

    Article  CAS  PubMed  Google Scholar 

  • Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C (2004) Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum 12:59–65

    Article  CAS  Google Scholar 

  • Baker MJ, Brem S, Daniels S, Sherman B, Phuphanich S (2002) Complete response of a recurrent, multicentric malignant glioma in a patient treated with phenylbutyrate. J Neurooncol 59:239–242

    Article  PubMed  Google Scholar 

  • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270:3189–3195

    Article  CAS  PubMed  Google Scholar 

  • Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Weissman AM (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 14:19–57

    Article  CAS  PubMed  Google Scholar 

  • Brusilow SW (1991) Phenylacetylglutamine may replace urea as a vehicle for waste nitrogen excretion. Pediatr Res 29:147–150

    CAS  PubMed  Google Scholar 

  • Brusilow SW, Danney M, Waber LJ, Batshaw M, Burton B, Levitsky L, Roth K, McKeethren C, Ward J (1984) Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis. N Engl J Med 310:1630–1634

    CAS  PubMed  Google Scholar 

  • Burke D, Dean Dawson, Stearns T (2000) Methods in yeast genetics, 2000 edition: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Burrows JA, Willis LK, Perlmutter DH (2000) Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA 97:1796–1801

    Article  CAS  PubMed  Google Scholar 

  • Carducci MA, Gilbert J, Bowling MK, Noe D, Eisenberger MA, Sinibaldi V, Zabelina Y, Chen TL, Grochow LB, Donehower RC (2001) A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin Cancer Res 7:3047–3055

    CAS  PubMed  Google Scholar 

  • Chang KT, Min KT (2002) Regulation of lifespan by histone deacetylase. Ageing Res Rev 1:313–326

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Xiao Z, Fitzgerald-Hayes M (1994) SCM2, a tryptophan permease in Saccharomyces cerevisiae, is important for cell growth. Mol Gen Genet 244:260–268

    CAS  PubMed  Google Scholar 

  • Chong PL, Fortes PA, Jameson DM (1985) Mechanisms of inhibition of (Na,K)-ATPase by hydrostatic pressure studied with fluorescent probes. J Biol Chem 260:14484–14490

    CAS  PubMed  Google Scholar 

  • Chung YL, Lee MY, Wang AJ, Yao LF (2003) A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther 8:707–717

    Article  CAS  PubMed  Google Scholar 

  • Collins AF, Pearson HA, Giardina P, McDonagh KT, Brusilow SW, Dover GJ (1995) Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 85:43–49

    CAS  PubMed  Google Scholar 

  • Cortese JD, McIntyre JO, Duncan TM, Fleischer S (1989) Cooperativity in lipid activation of 3-hydroxybutyrate dehydrogenase: role of lecithin as an essential allosteric activator. Biochemistry 28:3000–3008

    CAS  PubMed  Google Scholar 

  • Dasgupta S, Zhou Y, Jana M, Banik NL, Pahan K (2003) Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps. J Immunol 170:3874–3882

    CAS  PubMed  Google Scholar 

  • Depreter M, Espeel M, Roels F (2003) Human peroxisomal disorders. Microsc Res Tech 61:203–223

    Article  CAS  PubMed  Google Scholar 

  • Dover GJ (1998) Hemoglobin switching protocols in thalassemia. Experience with sodium phenylbutyrate and hydroxyurea. Ann NY Acad Sci 850:80–86

    CAS  PubMed  Google Scholar 

  • Dupre S, Haguenauer-Tsapis R (2001) Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol Cell Biol 21:4482–4494

    Article  CAS  PubMed  Google Scholar 

  • Forsberg H, Hammar M, Andreasson C, Moliner A, Ljungdahl PO (2001) Suppressors of ssy1 and ptr3 null mutations define novel amino acid sensor-independent genes in Saccharomyces cerevisiae. Genetics 158:973–988

    CAS  PubMed  Google Scholar 

  • Gelb MH, Tamanoi F, Yokoyama K, Ghomashchi F, Esson K, Gould MN (1995) The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett 91:169–175

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J, Baker SD, Bowling MK, Grochow L, Figg WD, Zabelina Y, Donehower RC, Carducci MA (2001) A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin Cancer Res 7:2292–2300

    CAS  PubMed  Google Scholar 

  • Grzanowski A, Needleman R, Brusilow WS (2002) Immunosuppressant-like effects of phenylbutyrate on growth inhibition of Saccharomyces cerevisiae. Curr Genet 41:142–149

    Article  CAS  PubMed  Google Scholar 

  • Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schuller C, Kuchler K, Piper PW (2003) Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20:575–585

    Article  CAS  PubMed  Google Scholar 

  • Heitman J, Koller A, Kunz J, Henriquez R, Schmidt A, Movva NR, Hall MN (1993) The immunosuppressant FK506 inhibits amino acid import in Saccharomyces cerevisiae. Mol Cell Biol 13:5010–5019

    CAS  PubMed  Google Scholar 

  • Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  CAS  PubMed  Google Scholar 

  • Holyoak CD, Bracey D, Piper PW, Kuchler K, Coote PJ (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181:4644–4652

    CAS  PubMed  Google Scholar 

  • Kang HL, Benzer S, Min KT (2002) Life extension in Drosophila by feeding a drug. Proc Natl Acad Sci USA 99:838–843

    Article  CAS  PubMed  Google Scholar 

  • Kemp S, Wei HM, Lu JF, Braiterman LT, McGuinness MC, Moser AB, Watkins PA, Smith KD (1998) Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat Med 4:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Kren A, Mamnun YM, Bauer BE, Schuller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23:1775–1785

    Article  CAS  PubMed  Google Scholar 

  • Lea MA, Randolph VM, Hodge SK (1999) Induction of histone acetylation and growth regulation in eryrthroleukemia cells by 4-phenylbutyrate and structural analogs. Anticancer Res 19:1971–1976

    CAS  PubMed  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    CAS  Google Scholar 

  • Linz U (2003) Complete response of a recurrent, multicentric malignant glioma in a patient treated with phenylbutyrate (author reply 251). J Neurooncol 66:251

    Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    Article  CAS  PubMed  Google Scholar 

  • Maslak P, Scheinberg D (2000) Targeted therapies for the myeloid leukaemias. Expert Opin Invest Drugs 9:1197–1205

    CAS  Google Scholar 

  • McGuinness MC, Zhang HP, Smith KD (2001) Evaluation of pharmacological induction of fatty acid beta-oxidation in X-linked adrenoleukodystrophy. Mol Genet Metab 74:256–263

    Article  CAS  PubMed  Google Scholar 

  • Melichar B, Ferrandina G, Verschraegen CF, Loercher A, Abbruzzese JL, Freedman RS (1998) Growth inhibitory effects of aromatic fatty acids on ovarian tumor cell lines. Clin Cancer Res 4:3069–3076

    CAS  PubMed  Google Scholar 

  • Ming L (2003) Targets of phenylbutyrate—a differentiating agent—in Saccharomyces cerevisiae. PhD thesis, Wayne State University School of Medicine, Detroit

  • Nakamura H, Miura K, Fukuda Y, Shibuya I, Ohta A, Takagi M (2000) Phosphatidylserine synthesis required for the maximal tryptophan transport activity in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 64:167–172

    CAS  PubMed  Google Scholar 

  • Newton AC (1993) Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu Rev Biophys Biomol Struct 22:1–25

    Article  CAS  PubMed  Google Scholar 

  • Omura F, Kodama Y (2004) The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation. FEMS Microbiol Lett 230:227–234

    Article  CAS  PubMed  Google Scholar 

  • Papa FR, Hochstrasser M (1993) The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 366:313–319

    Article  CAS  PubMed  Google Scholar 

  • Pineau T, Hudgins WR, Liu L, Chen LC, Sher T, Gonzalez FJ, Samid D (1996) Activation of a human peroxisome proliferator-activated receptor by the antitumor agent phenylacetate and its analogs. Biochem Pharmacol 52:659–667

    Article  CAS  PubMed  Google Scholar 

  • Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P, Kuchler K (1998) The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265

    Article  CAS  PubMed  Google Scholar 

  • Piscitelli SC, Thibault A, Figg WD, Tompkins A, Headlee D, Lieberman R, Samid D, Myers CE (1995) Disposition of phenylbutyrate and its metabolites, phenylacetate and phenylacetylglutamine. J Clin Pharmacol 35:368–373

    CAS  PubMed  Google Scholar 

  • Primhak RA, Tanner MS (2001) Alpha-1 antitrypsin deficiency. Arch Dis Child 85:2–5

    Article  CAS  PubMed  Google Scholar 

  • Regenberg B, Hansen J (2000) GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae. Yeast 16:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Regenberg B, Kielland-Brandt MC (2001) Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae. Yeast 18:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328

    Article  CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L, Heidtman M, Nelson FK, Iwasaki H, Hager K, Gerstein M, Miller P, Roeder GS, Snyder M (1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402:413–418

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein RC, Lyons BM (2001) Sodium 4-phenylbutyrate downregulates HSC70 expression by facilitating mRNA degradation. Am J Physiol Lung Cell Mol Physiol 281:L43–L51

    CAS  PubMed  Google Scholar 

  • Rubenstein RC, Zeitlin PL (1998a) A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 157:484–490

    CAS  PubMed  Google Scholar 

  • Rubenstein RC, Zeitlin PL (1998b) Use of protein repair therapy in the treatment of cystic fibrosis. Curr Opin Pediatr 10:250–255

    CAS  PubMed  Google Scholar 

  • Rubenstein RC, Zeitlin PL (2000) Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am J Physiol Cell Physiol 278:C259–C267

    Google Scholar 

  • Samid D, Hudgins WR, Shack S, Liu L, Prasanna P, Myers CE (1997) Phenylacetate and phenylbutyrate as novel, nontoxic differentiation inducers. Adv Exp Med Biol 400A:501–505

    CAS  PubMed  Google Scholar 

  • Samokhvalov VA, Museikina N, Mel’nikov GV, Ignatov VV (2003) Arsenite-induced lipid peroxidation in Saccharomyces cerevisiae. Mikrobiologiia 72:308–311

    CAS  PubMed  Google Scholar 

  • Schmidt A, Hall MN, Koller A (1994) Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol 14:6597–6606

    CAS  PubMed  Google Scholar 

  • Schmidt A, Beck T, Koller A, Kunz J, Hall MN (1998) The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 17:6924–6931

    Article  CAS  PubMed  Google Scholar 

  • Skrzypek MS, Nagiec MM, Lester RL, Dickson RC (1998) Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae. J Biol Chem 273:2829–2834

    Article  CAS  PubMed  Google Scholar 

  • Soetens O, De Craene JO, Andre B (2001) Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276:43949–43957

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Amerik AY, Hochstrasser M (1999) The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell 10:2583–2594

    CAS  PubMed  Google Scholar 

  • Umebayashi K, Nakano A (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol 161:1117–1131

    Article  CAS  PubMed  Google Scholar 

  • Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69:4534–4541

    Google Scholar 

  • Walczak J, Wood H, Wilding G, Williams T Jr, Bishop CW, Carducci M (2001) Prostate cancer prevention strategies using antiproliferative or differentiating agents. Urology 57:81–85

    Article  CAS  PubMed  Google Scholar 

  • Warrell RP Jr (1999) Arsenicals and inhibitors of histone deacetylase as anticancer therapy. Haematologica 84 [Suppl EHA-4]:75–77

    Article  PubMed  Google Scholar 

  • Warrell RP Jr, He LZ, Richon V, Calleja E, Pandolfi PP (1998) Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 90:1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Wolfe D, Reiner T, Keeley JL, Pizzini M, Keil RL (1999) Ubiquitin metabolism affects cellular response to volatile anesthetics in yeast. Mol Cell Biol 19:8254–8262

    CAS  PubMed  Google Scholar 

  • Yashiroda H, Oguchi T, Yasuda Y, Toh EA, Kikuchi Y (1996) Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. Mol Cell Biol 16:3255–3263

    CAS  PubMed  Google Scholar 

  • Zeitlin PL, Diener-West M, Rubenstein RC, Boyle MP, Lee CK, Brass-Ernst L (2002) Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 6:119–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W (2003) Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 278:50128–50135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the following individuals for generously supplying plasmids and strains: Bruno Andre (Universite Libre de Bruxelles, Belgium), Morton C. Kielland-Brandt (Carlsberg Laboratory, Copenhagen, Denmark), Frank Boschelli (Wyeth Research, Pearl River, N.Y., USA), Andrew Grzanowski (School of Veterinary Medicine, Michigan State University, Lansing, Mich., USA), Michael N. Hall (University of Basel, Basel, Switzerland), Randal J. Kaufman and Martin Schröder (University of Michigan Medical Center, Ann Arbor, Mich., USA), and Per O. Ljungdahl (Ludwig Institute for Cancer Research in Stockholm, Sweden). We also thank Nick and Amy Davis (WSU School of Medicine, Detroit, Mich., USA) for advice on the Western transfer analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Needleman.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Brusilow, W.S.A. & Needleman, R. Activity of the yeast Tat2p tryptophan permease is sensitive to the anti-tumor agent 4-phenylbutyrate. Curr Genet 46, 256–268 (2004). https://doi.org/10.1007/s00294-004-0531-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0531-7

Keywords