Skip to main content
Log in

Genetische Grundlagen seborrhoischer Keratosen und epidermaler Nävi

Genetic basis of seborrheic keratosis and epidermal nevi

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Seborrhoische Keratosen (SK) und epidermale Nävi (EN) sind gutartige Hauttumoren bzw. kongenitale Fehlbildungen. Pathogenetisch bedeutsam sind aktivierende onkogene Mutationen. Bei den SK findet man ein breites Spektrum an somatischen Mutationen in den Genen FGFR3, PIK3CA, RAS, AKT1 und EGFR. Im Unterschied zu malignen Tumoren sind SK jedoch genetisch stabil und zeigen keine Alterationen von Tumorsuppressor-Genen. EN werden durch postzygotische aktivierende Hotspot-Mutationen von FGFR3, PIK3CA und insbesondere HRAS verursacht, die zu einem genetischen Mosaik führen. Je nach Zeitpunkt der Mutation während der Embryogenese variieren die Ausdehnung der Fehlbildung sowie das Differenzierungspotenzial der mutierten Zellen in verschiedene Gewebetypen. Das genetische Mosaik kann auch zum späteren Wachstum gut- und bösartiger (Adnex-)Tumoren prädisponieren.

Abstract

Seborrheic keratosis (SK) and epidermal nevi (EN) represent benign skin tumors and congenital lesions, respectively. Oncogenic mutations are fundamentally involved in their pathogenesis and SK is characterized by a broad spectrum of somatic mutations in the FGFR3, PIK3CA, RAS, AKT1 and EGFR genes. In contrast to malignant tumors, SK is genetically stable without alterations of tumor suppressor genes. The ENs are caused by postzygotic activating hot spot mutations in FGFR3, PIK3CA and particularly HRAS, resulting in a genetic mosaicism. The size of the lesions and the differentiation potential of the mutated cell into various tissue types depends on the time point of the mutation during embryogenesis. The genetic mosaic may predispose to a later growth of benign and malignant (adnexal) tumors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Hafner C, Vogt T (2008) Seborrheic keratosis. J Dtsch Dermatol Ges 6:664–677

    Article  PubMed  Google Scholar 

  2. Ackerman AB, Ragaz A (1984) The lives of lesions. Masson Publishing, New York, USA

  3. Hafner C, Vogt T, Landthaler M et al (2008) Somatic FGFR3 and PIK3CA mutations are present in familial seborrhoeic keratoses. Br J Dermatol 159:214–217

    Article  CAS  PubMed  Google Scholar 

  4. Happle R (2010) The group of epidermal nevus syndromes Part I. Well defined phenotypes. J Am Acad Dermatol 63:1–22 (quiz 23–24)

    Article  PubMed  Google Scholar 

  5. Hafner C, Klein A, Landthaler M et al (2009) Clonality of basal cell carcinoma arising in an epidermal nevus. New insights provided by molecular analysis. Dermatology 218:278–281

    Article  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  7. Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura H, Hirota S, Adachi S et al (2001) Clonal nature of seborrheic keratosis demonstrated by using the polymorphism of the human androgen receptor locus as a marker. J Invest Dermatol 116:506–510

    Article  CAS  PubMed  Google Scholar 

  9. Logie A, Dunois-Larde C, Rosty C et al (2005) Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Hum Mol Genet 14:1153–1160

    Article  CAS  PubMed  Google Scholar 

  10. Cappellen D, De Oliveira C, Ricol D et al (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 23:18–20

    CAS  PubMed  Google Scholar 

  11. Tavormina PL, Shiang R, Thompson LM et al (1995) Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 9:321–328

    Article  CAS  PubMed  Google Scholar 

  12. Hafner C, Hartmann A, Real FX et al (2007) Spectrum of FGFR3 mutations in multiple intraindividual seborrheic keratoses. J Invest Dermatol 127:1883–1885

    Article  CAS  PubMed  Google Scholar 

  13. Hafner C, Oers JM van, Hartmann A et al (2006) High frequency of FGFR3 mutations in adenoid seborrheic keratoses. J Invest Dermatol 126:2404–2407

    Article  CAS  PubMed  Google Scholar 

  14. Hafner C, Vogt T, Hartmann A (2006) FGFR3 mutations in benign skin tumors. Cell Cycle 5:2723–2728

    Article  CAS  PubMed  Google Scholar 

  15. Hafner C, Hartmann A, Oers JM van et al (2007) FGFR3 mutations in seborrheic keratoses are already present in flat lesions and associated with age and localization. Mod Pathol 20:895–903

    Article  CAS  PubMed  Google Scholar 

  16. Hafner C, Di Martino E, Pitt E et al (2010) FGFR3 mutation affects cell growth, apoptosis and attachment in keratinocytes. Exp Cell Res 316:2008–2016

    Article  CAS  PubMed  Google Scholar 

  17. Naski MC, Wang Q, Xu J et al (1996) Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 13:233–237

    Article  CAS  PubMed  Google Scholar 

  18. Karakas B, Bachman KE, Park BH (2006) Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 94:455–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hafner C, Lopez-Knowles E, Luis NM et al (2007) Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc Natl Acad Sci U S A 104:13450–13454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hafner C, Toll A, Fernandez-Casado A et al (2010) Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors. Proc Natl Acad Sci U S A 107:20780–20785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jebar AH, Hurst CD, Tomlinson DC et al (2005) FGFR3 and RAS gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24:5218–5225

    Article  CAS  PubMed  Google Scholar 

  22. Duperret EK, Oh SJ, McNeal A et al (2014) Activating FGFR3 mutations cause mild hyperplasia in human skin, but are insufficient to drive benign or malignant skin tumors. Cell Cycle 13:1551–1559

    Article  CAS  PubMed  Google Scholar 

  23. Woodman SE, Mills GB (2010) Are oncogenes sufficient to cause human cancer? Proc Natl Acad Sci U S A 107:20599–20600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hallermann C, Gunawan B, Bertsch HP (2004) No chromosomal imbalances in seborrheic keratoses detectable by comparative genomic hybridization. J Invest Dermatol 123:1204–1205

    Article  PubMed  Google Scholar 

  25. Groesser L, Herschberger E, Landthaler M et al (2012) FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis. Br J Dermatol 166:784–788

    Article  CAS  PubMed  Google Scholar 

  26. Hafner C, Landthaler M, Mentzel T et al (2010) FGFR3 and PIK3CA mutations in stucco keratosis and dermatosis papulosa nigra. Br J Dermatol 162:508–512

    Article  CAS  PubMed  Google Scholar 

  27. Hafner C, Stoehr R, Oers JM van et al (2009) FGFR3 and PIK3CA mutations are involved in the molecular pathogenesis of solar lentigo. Br J Dermatol 160:546–551

    Article  CAS  PubMed  Google Scholar 

  28. Hafner C, Toll A, Gantner S et al (2012) Keratinocytic epidermal nevi are associated with mosaic ras mutations. J Med Genet 49:249–253

    Article  CAS  PubMed  Google Scholar 

  29. Hernandez S, Toll A, Baselga E et al (2007) Fibroblast growth factor receptor 3 mutations in epidermal nevi and associated low grade bladder tumors. J Invest Dermatol 127:1664–1666

    CAS  PubMed  Google Scholar 

  30. Hafner C, Oers JM van, Vogt T et al (2006) Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. J Clin Invest 116:2201–2207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Happle R (1993) Mosaicism in human skin. Understanding the patterns and mechanisms. Arch Dermatol 129:1460–1470

    Article  CAS  PubMed  Google Scholar 

  32. Happle R (1995) What is a nevus? A proposed definition of a common medical term. Dermatology 191:1–5

    Article  CAS  PubMed  Google Scholar 

  33. Happle R, Rogers M (2002) Epidermal nevi. Adv Dermatol 18:175–201

    PubMed  Google Scholar 

  34. Happle R (1987) Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin. J Am Acad Dermatol 16:899–906

    Article  CAS  PubMed  Google Scholar 

  35. Tuveson DA, Shaw AT, Willis NA et al (2004) Endogenous oncogenic k-ras(g12d) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5:375–387

    Article  CAS  PubMed  Google Scholar 

  36. Collin B, Taylor IB, Wilkie AO et al (2007) Fibroblast growth factor receptor 3 (FGFR3) mutation in a verrucous epidermal naevus associated with mild facial dysmorphism. Br J Dermatol 156:1353–1356

    Article  CAS  PubMed  Google Scholar 

  37. Bygum A, Fagerberg CR, Clemmensen OJ et al (2011) Systemic epidermal nevus with involvement of the oral mucosa due to FGFR3 mutation. BMC Med Genet 12:79

    Article  PubMed Central  PubMed  Google Scholar 

  38. Garcia-Vargas A, Hafner C, Perez-Rodriguez AG et al (2008) An epidermal nevus syndrome with cerebral involvement caused by a mosaic FGFR3 mutation. Am J Med Genet A 146A:2275–2279

    Article  PubMed  Google Scholar 

  39. Ousager LB, Bygum A, Hafner C (2012) Identification of a novel s249c FGFR3 mutation in a keratinocytic epidermal naevus syndrome. Br J Dermatol 167:202–204

    Article  CAS  PubMed  Google Scholar 

  40. Levinsohn JL, Teng J, Craiglow BG et al (2014) Somatic HRAS p.G12s mutation causes woolly hair and epidermal nevi. J Invest Dermatol 134:1149–1152

    Article  CAS  PubMed  Google Scholar 

  41. Lim YH, Ovejero D, Sugarman JS et al (2014) Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated fgf23 and hypophosphatemia. Hum Mol Genet 23:397–407

    Article  CAS  PubMed  Google Scholar 

  42. Bourdeaut F, Herault A, Gentien D et al (2010) Mosaicism for oncogenic g12d KRAS mutation associated with epidermal nevus, polycystic kidneys and rhabdomyosarcoma. J Med Genet 47:859–862

    Article  PubMed  Google Scholar 

  43. Hafner C, Toll A, Real FX (2011) HRAS mutation mosaicism causing urothelial cancer and epidermal nevus. N Engl J Med 365:1940–1942

    Article  CAS  PubMed  Google Scholar 

  44. Eisen DB, Michael DJ (2009) Sebaceous lesions and their associated syndromes: part I. J Am Acad Dermatol 61:549–560 (quiz 561–562)

    Article  PubMed  Google Scholar 

  45. Cribier B, Scrivener Y, Grosshans E (2000) Tumors arising in nevus sebaceus: a study of 596 cases. J Am Acad Dermatol 42:263–268

    Article  CAS  PubMed  Google Scholar 

  46. Santibanez-Gallerani A, Marshall D, Duarte AM et al (2003) Should nevus sebaceus of jadassohn in children be excised? A study of 757 cases, and literature review. J Craniofac Surg 14:658–660

    Article  PubMed  Google Scholar 

  47. Groesser L, Herschberger E, Ruetten A et al (2012) Postzygotic HRAS and KRAS mutations cause nevus sebaceous and schimmelpenning syndrome. Nat Genet 44:783–787

    Article  CAS  PubMed  Google Scholar 

  48. Levinsohn JL, Tian LC, Boyden LM et al (2013) Whole-exome sequencing reveals somatic mutations in HRAS and KRAS, which cause nevus sebaceus. J Invest Dermatol 133:827–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Sun BK, Saggini A, Sarin KY et al (2013) Mosaic activating ras mutations in nevus sebaceus and nevus sebaceus syndrome. J Invest Dermatol 133:824–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hafner C, Landthaler M, Happle R et al (2008) Nevus marginatus: a distinct type of epidermal nevus or merely a variant of nevus sebaceus? Dermatology 216:236–238

    Article  PubMed  Google Scholar 

  51. Happle R, Hoffmann R, Restano L et al (1996) Phacomatosis pigmentokeratotica: a melanocytic-epidermal twin nevus syndrome. Am J Med Genet 65:363–365

    Article  CAS  PubMed  Google Scholar 

  52. Groesser L, Vogt T, Happle R et al (2013) Nevus marginatus revisited: a combined organoid and non-organoid epidermal nevus caused by HRAS mutation. Br J Dermatol 168:892–894

    Article  CAS  PubMed  Google Scholar 

  53. Happle R, Koopman R, Mier PD (1990) Hypothesis: vascular twin naevi and somatic recombination in man. Lancet 335:376–378

    Article  CAS  PubMed  Google Scholar 

  54. Koopman RJ (1999) Concept of twin spotting. Am J Med Genet 85:355–358

    Article  CAS  PubMed  Google Scholar 

  55. Groesser L, Herschberger E, Sagrera A et al (2013) Phacomatosis pigmentokeratotica is caused by a postzygotic HRAS mutation in a multipotent progenitor cell. J Invest Dermatol 133:1998–2003

    Article  CAS  PubMed  Google Scholar 

  56. Tidyman WE, Rauen KA (2009) The rasopathies: developmental syndromes of RAS/MAPK pathway dysregulation. Curr Opin Genet Dev 19:230–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Hafner C, Groesser L (2013) Mosaic rasopathies. Cell Cycle 12:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Georgieva IA, Mauerer A, Groesser L et al (2014) Low incidence of oncogenic EGFR, HRAS, and KRAS mutations in seborrheic keratosis. Am J Dermatopathol 36: 635–642

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Hafner, H. Hafner und L. Groesser geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hafner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafner, C., Hafner, H. & Groesser, L. Genetische Grundlagen seborrhoischer Keratosen und epidermaler Nävi. Pathologe 35, 413–423 (2014). https://doi.org/10.1007/s00292-014-1928-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-014-1928-9

Schlüsselwörter

Keywords

Navigation