Skip to main content
Log in

Mesenchymale Stromazellen und ihre Nische

Mesenchymal stroma cells and their niche

  • Hauptreferate
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Stammzellen leben in einem hochspezialisierten Mikromilieu, das als Stammzellnische bezeichnet wird. Die Stammzellnische kann vereinfacht umschrieben werden als anatomisch definierter Raum, in dem die Stammzelle lokalisiert ist, ernährt und die Homöostase des Stammzellpools über Stammzellproliferation und -differenzierung reguliert wird. Ein primäres Ziel des Tissue Engineering ist es, die Stammzellnische zu imitieren, um entweder die Differenzierung der Stammzelle in eine bestimmte Richtung zu induzieren, ihr Selbsterneuerungspotenzial zu erhalten oder beide Eigenschaften in einem ausbalancierten Verhältnis zu wahren.

Mesenchymale Stamm-/Stromazellen („mesenchymal stem cells“, MSC) können in einem phosphatreichen Kultivierungsmileu in einer 3-D-kollagenreichen Matrix in Osteoblasten differenzieren und einen prosynthetischen, matrixremodellierenden Phänotyp akquirieren. Da es im Rahmen der Gefäßverkalkung beim niereninsuffizienten Patienten auch zu einer ausgeprägten Matrixremodellierung mit Verkalkung kommt, wurde der Einfluss der Urämie als pathophysiologischer Stimulus auf MSC und Endothelzellen untersucht. Die Ergebnisse stellen klar, dass BMP-2/4-vermittelt in der Urämie eine osteogene (Mal)Differenzierung der MSC mit ausgeprägter Matrixverkalkung eintritt und MSC ihre proangiogenen Eigenschaften verlieren, sodass keine Nischenfunktion für Endothelzellen aufgebaut werden kann. Die Arbeiten lassen den Schluss zu, dass die Urämie die Stammzellnische zerstört und eine fortschreitende Gefäßverkalkung durch osteogene (Mal)Differenzierung der MSC beeinflussen kann.

So kann die Stammzellnische Stammzelleigenschaften dirigieren und ihre Nachahmung kann in vitro für das Tissue Engineering genutzt werden, jedoch scheint die Stammzellnische unter pathophysiologischen Bedingungen entscheidend zur Pathogenese einer Erkrankung beitragen zu können.

Abstract

Stem cells reside in a highly specialized, complex microenvironment that is known as the stem cell niche. The stem cell niche can be described as an anatomically defined space where the stem cell is localized and nourished and stem cell quiescence, proliferation and differentiation are maintained. Tissue engineering aims to imitate the stem cell niche to (I) induce a directed differentiation, (II) maintain the self-renewal capacity or (III) find a regulated balance between self-renewal and differentiation. Mesenchymal stem or stromal cells (MSC) can differentiate in three-dimensional collagen gels into functional osteoblasts when subjected to a phosphate-rich cultivation medium. Furthermore, they acquire a prosynthetic, matrix remodeling, contractile phenotype. Medial artery calcification in patients with chronic kidney disease also proceeds through intramembranous ossification resulting from osteoblast-induced calcification of the collagen extracellular matrix. Thus, the influence of uremic cultivation conditions as a pathophysiological stimulus on MSC and endothelial cells was analyzed with special regards to matrix remodeling, vascularization and calcification. The results showed that BMP-2/4 mediated MSC (mal)differentiation into osteoblasts with acquired matrix remodeling phenotype and loss of proangiogenic capacity. These studies have led to the conclusion that uremia has detrimental effects on the stem cell niche and promotes the continuous calcification by osteogenic (mal)differentiation. In summary, recent studies have shown the conducting and regulating effect of the stem cell niche under physiological conditions that can be applied and mimicked for tissue engineering applications. However, under pathological conditions the stem cell niche can have detrimental effects on stem cell function and can promote disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bostrom K, Watson KE, Horn S et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    Article  PubMed  CAS  Google Scholar 

  2. Bunting CH (1906) The formation of true bone with cellular (red) marrow in a sclerotic aorta. J Exp Med 8:365–376

    Article  PubMed  CAS  Google Scholar 

  3. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  4. Chen NX, Duan D, O’Neill KD et al (2006) The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int 70:1046–1053

    Article  PubMed  CAS  Google Scholar 

  5. Dalfino G, Simone S, Porreca S et al (2010) Bone morphogenetic protein-2 may represent the molecular link between oxidative stress and vascular stiffness in chronic kidney disease. Atherosclerosis 211:418–423

    Article  PubMed  CAS  Google Scholar 

  6. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  7. Feaver RE, Gelfand BD, Wang C et al (2010) Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. Circ Res 106:1703–1711

    Article  PubMed  CAS  Google Scholar 

  8. Friedenstein AJ, Chailakhyan RK, Latsinik NV et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

    Article  PubMed  CAS  Google Scholar 

  9. Horwitz EM, Le Blanc K, Dominici M et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  PubMed  CAS  Google Scholar 

  10. Hunt JL, Fairman R, Mitchell ME et al (2002) Bone formation in carotid plaques: a clinicopathological study. Stroke 33:1214–1219

    Article  PubMed  Google Scholar 

  11. Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 99:1044–1059

    Article  PubMed  CAS  Google Scholar 

  12. Jono S, Nishizawa Y, Shioi A et al (1997) Parathyroid hormone-related peptide as a local regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17:1135–1142

    Article  PubMed  CAS  Google Scholar 

  13. Khan WS, Adesida AB, Tew SR et al (2010) Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res 28:834–840

    PubMed  CAS  Google Scholar 

  14. Kramann R, Couson SK, Neuss S et al (2012) Uraemia disrupts the vascular niche in a 3D co-culture system of human mesenchymal stem cells and endothelial cells. Nephrol Dial Transplant 27:2693–2702

    Article  PubMed  CAS  Google Scholar 

  15. Kramann R, Couson SK, Neuss S et al (2011) Exposure to uremic serum induces a procalcific phenotype in human mesenchymal stem cells. Arterioscler Thromb Vasc Biol 31:e45–e54

    Article  PubMed  CAS  Google Scholar 

  16. Leisten I, Kramann R, Ventura Ferreira MS et al (2012) 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 33:1736–1747

    Article  PubMed  CAS  Google Scholar 

  17. Li J, Chai S, Tang C et al (2003) Homocysteine potentiates calcification of cultured rat aortic smooth muscle cells. Life Sci 74:451–461

    Article  PubMed  CAS  Google Scholar 

  18. Nayak RC, Berman AB, George KL et al (1988) A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J Exp Med 167:1003–1015

    Article  PubMed  CAS  Google Scholar 

  19. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    PubMed  CAS  Google Scholar 

  20. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  21. Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  PubMed  CAS  Google Scholar 

  22. Scadden DT (2007) The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol 20:19–27

    Article  PubMed  CAS  Google Scholar 

  23. Schneider RK, Anraths J, Kramann R et al (2010) The role of biomaterials in the direction of mesenchymal stem cell properties and extracellular matrix remodelling in dermal tissue engineering. Biomaterials 31:7948–7959

    Article  PubMed  CAS  Google Scholar 

  24. Schneider RK, Neuss S, Knuchel R et al (2010) Mesenchymal stem cells for bone tissue engineering. Pathologe 31(Suppl 2):138–146

    Article  PubMed  Google Scholar 

  25. Schneider RK, Neuss S, Stainforth R et al (2008) Three-dimensional epidermis-like growth of human mesenchymal stem cells on dermal equivalents: contribution to tissue organization by adaptation of myofibroblastic phenotype and function. Differentiation 76:156–167

    Article  PubMed  CAS  Google Scholar 

  26. Schneider RK, Puellen A, Kramann R et al (2010) The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31:467–480

    Article  PubMed  CAS  Google Scholar 

  27. Schneider RK, Pullen A, Kramann R et al (2010) Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation 79:182–193

    Article  PubMed  CAS  Google Scholar 

  28. Serradell M, Diaz-Ricart M, Cases A et al (2003) Uraemic medium accelerates proliferation but does not induce apoptosis of endothelial cells in culture. Nephrol Dial Transplant 18:1079–1085

    Article  PubMed  CAS  Google Scholar 

  29. Tavassoli M, Crosby WH (1968) Transplantation of marrow to extramedullary sites. Science 161:54–56

    Article  PubMed  CAS  Google Scholar 

  30. Tyson KL, Reynolds JL, Mcnair R et al (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494

    Article  PubMed  CAS  Google Scholar 

  31. Van De Kamp J, Kramann R, Anraths J et al (2012) Epithelial morphogenesis of germline-derived pluripotent stem cells on organotypic skin equivalents in vitro. Differentiation 83:138–147

    Article  Google Scholar 

  32. Watson KE, Parhami F, Shin V et al (1998) Fibronectin and collagen I matrixes promote calcification of vascular cells in vitro, whereas collagen IV matrix is inhibitory. Arterioscler Thromb Vasc Biol 18:1964–1971

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R.K. Schneider gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.K. Schneider.

Additional information

The supplement this article is part of is not sponsored by the industry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, R. Mesenchymale Stromazellen und ihre Nische. Pathologe 34 (Suppl 2), 264–268 (2013). https://doi.org/10.1007/s00292-013-1818-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-013-1818-6

Schlüsselwörter

Keywords

Navigation