Skip to main content
Log in

Neuroendokrine Differenzierung im Prostatakarzinom

Ein Marker für die Androgen- und Strahlenresistenz

Neuroendocrine differentiation in prostate cancer: an unrecognized and therapy resistant phenotype

  • Schwerpunkt: Prostatapathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Das gewöhnliche Adenokarzinom der Prostata besteht überwiegend aus exokrinen (PSA-produzierenden) Tumorzellen. Daneben finden sich neuroendokrine (NE) Tumorzellen, die nahezu in allen Prostatakarzinomen (PCa) vorkommen. Der NE-Phänotyp wird meist erst immunhistochemisch (Chromogranin A) erkannt. Zellbiologische und klinische Daten sprechen für die Androgen- und Strahlenresistenz der NE-Tumorzellen im gewöhnlichen Prostatakarzinom.

Die NE-Tumorzellen befinden sich in der G0-Phase des Zellzyklus und sind weitgehend resistent gegenüber dem programmierten Zelltod. Sie entstehen über einen Prozess der intermediären Differenzierung aus dem exokrinen Tumorzelltyp. Den NE-Tumorzellen fehlt der Androgenrezeptor (AR), sie produzieren aber eine Reihe von hormonellen Wachstumsfaktoren, die die Proliferationsaktivität in benachbarten, exokrinen Tumorzellen über parakrine (androgenunabhängige) Regulationsmechanismen beeinflussen können.

Die NE-Tumorzellen bilden somit eine androgeninsensitive Zellpopulation im Prostatakarzinom und sind als G0-Zellen relativ strahlenresistent und potenziell unsterblich. In der klinischen und histopathologischen Routinediagnostik sollte gezielt nach der NE-Differenzierung gefahndet werden, wenn für den Patienten die Option auf eine Androgenentzugs- bzw. Strahlentherapie besteht.

Abstract

Neuroendocrine (NE) differentiation frequently occurs in common prostatic malignancies but usually escapes pathological and clinical detection. The present review focuses on biological properties of NE tumor cells making them resistant to androgen deprivation and radiation therapy. Recent data have shown that NE prostate cancer cells (as defined by the most commonly used endocrine marker chromogranin A) are arrested in the G0-phase of the cell cycle and do not undergo apoptosis. This particular phenotype consistently lacks the nuclear androgen receptor in both benign and malignant conditions but produces a series of hormonal growth factors exerting mitogenic stimuli on adjacent, exocrine tumor cells.

Neoplastic NE cells devoid of the nuclear androgen receptor constitute an androgen-insensitive cell population in prostate cancer. The absence of proliferative and apoptotic activity makes NE tumor cells particularly resistant towards cytotoxic drugs and radiation therapy. Pathological and clinical detection of NE features is recommended for all prostate cancer patients for whom radiation therapy and androgen deprivation is being considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Ahel MZ, Kovacic K, Tarle M (2001) Cross-correlation of serum chromogranin A, %-F-PSA and bone scans in prostate cancer diagnosis. Anticancer Res 21:1363–1366

    PubMed  Google Scholar 

  2. Berruti A, Dogliotti L, Mosca A et al. (2000) Circulating neuroendocrine markers in patients with prostate carcinoma. Cancer 88:2590–2597

    Article  PubMed  Google Scholar 

  3. Bonkhoff H (1998) Neuroendocrine cells in benign and malignant prostate tissue: morphogenesis, proliferation, and androgen receptor status. Prostate Suppl 8:18–22

    Article  PubMed  Google Scholar 

  4. Bonkhoff H (2001) Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Arch Oncol Suppl 2:141–144

    Google Scholar 

  5. Bonkhoff H, Remberger K (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28:98–106

    Article  PubMed  Google Scholar 

  6. Bonkhoff H, Remberger K (1998) Morphogenetic concepts of normal and abnormal growth of the human prostate. Virchows Arch 433,195–202

    Google Scholar 

  7. Bonkhoff H, Stein U, Remberger K (1993) Androgen receptor status in endocrine-paracrine cell types of the normal, hyperplastic, and neoplastic human prostate. Virchows Arch A Pathol Anat Histopathol 423:291–294

    Article  PubMed  Google Scholar 

  8. Bonkhoff H, Stein U, Remberger K (1994 a) Multidirectional differentiation in the normal, hyperplastic and neoplastic human prostate. Simultaneous demonstration of cell specific epithelial markers. Hum Pathol 25:42–46

    Article  PubMed  Google Scholar 

  9. Bonkhoff H, Stein U, Remberger K (1994 b) The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 24:114–118

    PubMed  Google Scholar 

  10. Bonkhoff H, Wernert N, Dhom G, Remberger K (1991) Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic and neoplastic human prostate. Prostate 18:91–98

    Google Scholar 

  11. Bonkhoff H, Stein U, Remberger K (1995) Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells. Hum Pathol 26:167–170

    Article  PubMed  Google Scholar 

  12. Bonkhoff H, Stein U, Aumüller G, Remberger K (1996) Differenzial expression of 5 α-reductase isoenzymes in the human prostate and prostatic carcinoma. Prostate 29:261–267

    Article  PubMed  Google Scholar 

  13. Bonkhoff H, Fixemer T, Hunsicker I, Remberger K (1999) Simultaneous detection of DNA fragmentation (apoptosis), cell proliferation (MiB-1), and phenotype markers in routinely processed tissue sections. Virchows Arch 434:71–73

    Article  PubMed  Google Scholar 

  14. Bostwick DG, Grignon DJ, Hammond ME et al. (2000) Prognostic factors in prostate cancer. College of American Pathologists, Consensus Statement 1999. Arch Pathol Lab Med 124:995–1000

    PubMed  Google Scholar 

  15. Chuang CK, Wu TL, Tsao KC, Liaso SK (2003) Elevated serum Chromogranin A precedes prostate-specific antigen elevation and predicts failure of androgen deprivation therapy in patients with advanced prostate cancer. J Formos Med Assoc 102:480–485

    PubMed  Google Scholar 

  16. Di Sant’Agnese PA, Cockett AT (1996) Neuroendocrine differentiation in prostatic malignancy. Cancer 78:357–361

    Article  PubMed  Google Scholar 

  17. Di Silverio F, Sciarra A (2003) Combiation therapy of ethinylestadiol and soamtostatin analogue reintroduces objective clinical responses and decreases chromogranin A in patients with androgen ablation refractory prostate cancer. J Urol 170:1812–1816

    Article  PubMed  Google Scholar 

  18. Fixemer T, Remberger K, Bonkhoff H (2002) Apoptosis resistance of neuroendocrine phenotypes in prostatic adenocarcinoma. Prostate 53:118–123

    Article  PubMed  Google Scholar 

  19. Hvamstad T, Jordal A, Hekmat N et al. (2003) Neuroendocrine serum tumour markers in hormone-resistant prostate cancer. Eur Urol 44:215–221

    Article  PubMed  Google Scholar 

  20. Koivisto P, Kolmer M, Visakorpi T, Kallioniemi OP (1998) Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol 152:1–9

    PubMed  Google Scholar 

  21. Lilleby W, Paus E, Skovlund E, Fossa SD (2001) Prognostic value of neuroendocrine serum markers and PSA in irradiated patients with pN0 localized prostate cancer. Prostate 46:126–133

    Article  PubMed  Google Scholar 

  22. Sciarra A, Mariotti G, Gentile V et al. (2003 a) Neuroendocrine differentiation in human prostate tissue: is it detectable and treatable? BJU Int 91:438–445

    Article  PubMed  Google Scholar 

  23. Sciarra A, Monti S, Gentile V et al. (2003 b) Variation in chromogranin A serum levels during intermittent vs. continuous androgen deprivation therapy for prostate adenocarcinoma. Prostate 55:168–179

    Article  PubMed  Google Scholar 

  24. Sciarra A, Voria G, Monti S et al. (2005) Clinical understaging in patients with prostate adenocarcinoma submitted to radical prostatectomy: predictive value of serum chromogranin A. Prostate 58:421–428

    Article  PubMed  Google Scholar 

  25. Tarle M (1999) Serum chromogranin A in monitoring metastatic prostate cancer patients. Anticancer Res 19:5663–5666

    PubMed  Google Scholar 

  26. Tarle M, Ahel MZ, Kovacic K (2002) Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res 22:2525–2529

    PubMed  Google Scholar 

  27. Theodorescu D, Broder SR, Boyd JC et al. (1997) Cathepsin D and chromogranin A as predictors of long term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer 80:2109–2119

    Article  PubMed  Google Scholar 

  28. Weinstein MH, Partin AW, Veltri RW, Epstein JI (1996) Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 27:683–687

    Article  PubMed  Google Scholar 

  29. Wiegel T (2002) Prostatakarzinom. Onkologe Suppl 1:518–520

    Google Scholar 

  30. Zaky Ahel M, Kovacic K, Kraljic I, Tarle M (2001) Oral estramustine therapy in serum chromogranin A-positive stage D3 prostate cancer patients. Anticancer Res 21:1475–1479

    PubMed  Google Scholar 

Download references

Danksagung

Mit freundlicher Unterstützung durch die Deutsche Forschungsgemeinschaft, Bo 1018/2–3.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bonkhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonkhoff, H., Fixemer, T. Neuroendokrine Differenzierung im Prostatakarzinom. Pathologe 26, 453–460 (2005). https://doi.org/10.1007/s00292-005-0791-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-005-0791-0

Schlüsselwörter

Keywords

Navigation