Skip to main content
Log in

The influence of acetic acid and ethanol on the fabrication and properties of poly(vinyl alcohol) nanofibers produced by electrospinning

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, the method for the fabrication of nanofibers based on poly(vinyl alcohol) (PVA) with controlled characteristics and surface morphology from binary solvent systems has been developed. Based on the Hildebrand–Scatchard theory of solubility, the calculated Teas diagrams, which take into account intermolecular interactions, made it possible to predict the formation of low-defect nanofibers based on PVA in systems of binary solvents with a higher proportion of hydrogen bonds. As a result of the findings, ethanol was determined to be a “inappropriate” solvent for the electrospinning PVA solution, whereas water and acetic acid displayed the properties of a “appropriate” solvent. The decrease in the volume of the unit cell with a slight decrease in the overall degree of crystallinity of the substance demonstrated the dependence of the change in the crystallization mechanism during the formation of PVA nanofibers on the transition from an individual aqueous polymer solution to the water/acetic acid binary solvent system. Compared with the results obtained during the PVA nanofibers fabrication from aqueous solution, the addition of 35% by weight of acetic acid to the aqueous solution of 8 wt% PVA allowed to lower the voltage from 30 to 26 kV and to increase the fiber fabrication yield by the increase in the flow rate from 0.2 to 0.3 mL/h. We confirmed that acetic acid has no effect on the chemical properties of PVA nanofibers however did change their lattice structure and reduce crystallinity of nanofibers. Such safe systems with controlled properties are suitable ones for biological active compounds encapsulation for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nawaz A, Hümmelgen IA (2019) Poly(vinyl alcohol) gate dielectric in organic field-effect transistors. J Mater Sci: Mater Electron 30:5299–5326. https://doi.org/10.1007/s10854-019-00873-5

    Article  CAS  Google Scholar 

  2. Said M, Abd El-Azim AA, Ali MM et al (2020) Effect of elevated temperature on axially and eccentrically loaded columns containing polyvinyl alcohol (PVA) fibers. Eng Struct 204:110065. https://doi.org/10.1016/j.engstruct.2019.110065

    Article  Google Scholar 

  3. Teodorescu M, Bercea M, Morariu S (2019) Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv 37:109–131. https://doi.org/10.1016/j.biotechadv.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  4. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326. https://doi.org/10.1016/s0278-6915(02)00258-2

    Article  CAS  PubMed  Google Scholar 

  5. Iqbal DN, Tariq M, Khan SM et al (2020) Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol. Int J Biol Macromol 143:546–554. https://doi.org/10.1016/j.ijbiomac.2019.12.043

    Article  CAS  PubMed  Google Scholar 

  6. Nataraj D, Reddy R, Reddy N (2020) Crosslinking electrospun poly(vinyl) alcohol fibers with citric acid to impart aqueous stability for medical applications. Eur Polym J 124:109484. https://doi.org/10.1016/j.eurpolymj.2020.109484

    Article  CAS  Google Scholar 

  7. Pervez MN, Stylios GK, Liang Y et al (2020) Low-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradation. J Clean Prod 262:121301. https://doi.org/10.1016/j.jclepro.2020.121301

    Article  CAS  Google Scholar 

  8. DailyMed (2015) Current medication information for ARTIFICIAL TEARS- polyvinyl alcohol solution/drops. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2ef16864-97cb-4dfe-9461-cba156144c69

  9. Kita M, Ogura Y, Honda Y et al (1990) Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graefes Arch Clin Exp Ophthalmol 228:533–537. https://doi.org/10.1007/BF00918486

    Article  CAS  PubMed  Google Scholar 

  10. Nargesi Khoramabadi H, Arefian M, Hojjati M et al (2020) A review of polyvinyl alcohol/carboxy methyl cellulose (PVA/CMC) composites for various applications. J Compos Comp 2(3):69–76. https://doi.org/10.29252/jcc.2.2.2

    Article  Google Scholar 

  11. Abdallah OM, EL-Baghdady KZ, Khalil MMH et al (2020) Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites. J Polym Res 27:74. https://doi.org/10.1007/s10965-020-02050-3

    Article  CAS  Google Scholar 

  12. Yang Y, Zhao Y, Liu J et al (2020) Flexible and transparent high-dielectric-constant polymer films based on molecular ferroelectric-modified poly(vinyl alcohol). ACS Mater Lett 2:453–460. https://doi.org/10.1021/acsmaterialslett.0c00086

    Article  CAS  Google Scholar 

  13. Xie Y, Lin X, Li H, Ji T (2020) Effect of polyvinyl alcohol powder on the bonding mechanism of a new magnesium phosphate cement mortar. Constr Build Mater 239:117871. https://doi.org/10.1016/j.conbuildmat.2019.117871

    Article  CAS  Google Scholar 

  14. Reena KA, Mahto V, Choubey AK (2020) Synthesis and characterization of cross-linked hydrogels using polyvinyl alcohol and polyvinyl pyrrolidone and their blend for water shut-off treatments. J Mol Liq 301:112472. https://doi.org/10.1016/j.molliq.2020.112472

    Article  CAS  Google Scholar 

  15. Hashmi M, Ullah S, Kim IS (2020) Electrospun momordica charantia incorporated polyvinyl alcohol (PVA) nanofibers for antibacterial applications. Mater Today Commun 24:101161. https://doi.org/10.1016/j.mtcomm.2020.101161

    Article  CAS  Google Scholar 

  16. Muppalla SR, Kanatt SR, Chawla SP, Sharma A (2014) Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packag Shelf Life 2:51–58. https://doi.org/10.1016/j.fpsl.2014.07.002

    Article  Google Scholar 

  17. Jiang Y, Schädlich A, Amado E et al (2010) In-vivo studies on intraperitoneally administrated poly(vinyl alcohol). J Biomed Mater Res B Appl Biomater 93B:275–284. https://doi.org/10.1002/jbm.b.31585

    Article  CAS  Google Scholar 

  18. Zhang H, Zhang J (2020) The preparation of novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs) aerogel for solvents adsorption application. J Colloid Interface Sci 569:254–266. https://doi.org/10.1016/j.jcis.2020.02.053

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Nwabor OF, Singh S, Paosen S et al (2020) Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive eucalyptus leaf extracts. Food Biosci 36:100609. https://doi.org/10.1016/j.fbio.2020.100609

    Article  CAS  Google Scholar 

  20. Reguieg F, Ricci L, Bouyacoub N et al (2020) Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT. Polym Bull 77:929–948. https://doi.org/10.1007/s00289-019-02782-3

    Article  CAS  Google Scholar 

  21. Musa BH, Hameed NJ (2020) Study of the mechanical properties of polyvinyl alcohol/starch blends. Mater Today Proc 20:439–442. https://doi.org/10.1016/j.matpr.2019.09.161

    Article  CAS  Google Scholar 

  22. Kusumaatmaja A, Sukandaru B, Chotimah TK (2016) Application of polyvinyl alcohol nanofiber membrane for smoke filtration. AIP Conf Proc 1755:150006. https://doi.org/10.1063/1.4958579

    Article  Google Scholar 

  23. Kim G, Doh SJ, Kim Y et al (2022) Electrospun polyvinyl alcohol composite nonwovens for air filtration materials in the humidity environment. Fibers Polym 23:690–698. https://doi.org/10.1007/s12221-022-3418-7

    Article  CAS  Google Scholar 

  24. Yeo JH, Kim M, Lee H et al (2020) Facile and novel eco-friendly poly(vinyl alcohol) nanofilters using the photocatalytic property of titanium dioxide. ACS Omega 5:5026–5033. https://doi.org/10.1021/acsomega.9b03944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim H-J, Choi D-I, Sung S-K et al (2021) Eco-friendly poly(vinyl alcohol) nanofiber-based air filter for effectively capturing particulate matter. Appl Sci 11:3831. https://doi.org/10.3390/app11093831

    Article  CAS  Google Scholar 

  26. Deng Y, Lu T, Zhang X et al (2022) Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration. J Memb Sci 660:120857. https://doi.org/10.1016/j.memsci.2022.120857

    Article  CAS  Google Scholar 

  27. Deeksha B, Sadanand V, Hariram N, Rajulu AV (2021) Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J Bioresour Bioprod 6:75–81. https://doi.org/10.1016/j.jobab.2021.01.003

    Article  CAS  Google Scholar 

  28. Teixeira MA, Amorim MTP, Felgueiras HP (2019) Poly(vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers (Basel) 12:7. https://doi.org/10.3390/polym12010007

    Article  CAS  PubMed  Google Scholar 

  29. Coelho D, Sampaio A, Silva CJSM et al (2017) Antibacterial electrospun poly(vinyl alcohol)/enzymatic synthesized poly(catechol) nanofibrous midlayer membrane for ultrafiltration. ACS Appl Mater Interfaces 9:33107–33118. https://doi.org/10.1021/acsami.7b09068

    Article  CAS  PubMed  Google Scholar 

  30. Hasan A, Memic A, Annabi N et al (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10:11–25. https://doi.org/10.1016/j.actbio.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  31. Kong B, Mi S (2016) Electrospun scaffolds for corneal tissue engineering: a review. Materials 9:614. https://doi.org/10.3390/ma9080614

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Gupta KC, Haider A, Choi Y, Kang I (2014) Nanofibrous scaffolds in biomedical applications. Biomater Res 18:5. https://doi.org/10.1186/2055-7124-18-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19. https://doi.org/10.1155/2011/290602

    Article  Google Scholar 

  34. Shokry Hassan H, Kashyout AB, Morsi I et al (2014) Fabrication and characterization of gas sensor micro-arrays. Sens Biosens Res 1:34–40. https://doi.org/10.1016/j.sbsr.2014.04.001

    Article  Google Scholar 

  35. Shokry Hassan H, Kashyout AB, Morsi I et al (2015) Development of polypyrrole coated copper nanowires for gas sensor application. Sens Biosens Res 5:50–54. https://doi.org/10.1016/j.sbsr.2015.07.004

    Article  Google Scholar 

  36. Zhou Z-Q, Yan R, Zhao J et al (2018) Highly selective and sensitive detection of Hg2+ based on fluorescence enhancement of Mn-doped ZnSe QDs by Hg2+–Mn2+ replacement. Sens Actuators B Chem 254:8–15. https://doi.org/10.1016/j.snb.2017.07.033

    Article  CAS  Google Scholar 

  37. Deng X, Zhang L, Guo J et al (2017) ZnO enhanced NiO-based gas sensors towards ethanol. Mater Res Bull 90:170–174. https://doi.org/10.1016/j.materresbull.2017.02.040

    Article  CAS  Google Scholar 

  38. Venugopalan T, Yeo TL, Sun T, Grattan KTV (2008) LPG-based PVA coated sensor for relative humidity measurement. IEEE Sens J 8:1093–1098. https://doi.org/10.1109/JSEN.2008.926524

    Article  ADS  Google Scholar 

  39. Zhou G, Byun J-H, Oh Y et al (2017) Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl Mater Interfaces 9:4788–4797. https://doi.org/10.1021/acsami.6b12448

    Article  CAS  PubMed  Google Scholar 

  40. Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML (2021) Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 600:120478. https://doi.org/10.1016/j.ijpharm.2021.120478

    Article  CAS  PubMed  Google Scholar 

  41. Rahmani F, Ziyadi H, Baghali M et al (2021) Electrospun PVP/PVA nanofiber mat as a novel potential transdermal drug-delivery system for buprenorphine: a solution needed for pain management. Appl Sci 11:2779. https://doi.org/10.3390/app11062779

    Article  CAS  Google Scholar 

  42. Yang D, Li Y, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym 69:538–543. https://doi.org/10.1016/j.carbpol.2007.01.008

    Article  CAS  Google Scholar 

  43. Desai N, Rana D, Salave S et al (2023) Chitosan: a potential biopolymer in drug delivery and biomedical applications. Pharmaceutics 15:1313. https://doi.org/10.3390/pharmaceutics15041313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zahra FT, Quick Q, Mu R (2023) Electrospun PVA fibers for drug delivery: a review. Polymers (Basel) 15:3837. https://doi.org/10.3390/polym15183837

    Article  CAS  PubMed  Google Scholar 

  45. Farhaj S, Conway BR, Ghori MU (2023) Nanofibres in drug delivery applications. Fibers 11:21. https://doi.org/10.3390/fib11020021

    Article  CAS  Google Scholar 

  46. Mallapragada SK, McCarthy-Schroeder S (2000) Poly(vinyl alcohol) as a drug delivery carrier. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. CRC Press, Boca Raton, pp 31–46. https://doi.org/10.1201/9781482289985

    Chapter  Google Scholar 

  47. Hu X, Liu S, Zhou G et al (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21. https://doi.org/10.1016/j.jconrel.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  48. Li Q, Jia Z, Yang L et al (2008) Preparation and properties of poly(vinyl alcohol) nanofibers by electrospinning. J Polym Eng 28(1–2):87–100. https://doi.org/10.1515/POLYENG.2008.28.1-2.87

    Article  Google Scholar 

  49. Oktay B, Kayaman-Apohan N, Erdem-Kuruca S (2014) Fabrication of nanofiber mats from electrospinning of functionalized polymers. IOP Conf Ser Mater Sci Eng 64:012011. https://doi.org/10.1088/1757-899X/64/1/012011

    Article  CAS  Google Scholar 

  50. Park J-C, Ito T, Kim K-O et al (2010) Electrospun poly(vinyl alcohol) nanofibers: effects of degree of hydrolysis and enhanced water stability. Polym J 42:273–276. https://doi.org/10.1038/pj.2009.340

    Article  CAS  Google Scholar 

  51. Uslu E, Gavgali M, Erdal MO et al (2021) Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: a comparative study. Mater Today Commun 26:101939. https://doi.org/10.1016/j.mtcomm.2020.101939

    Article  CAS  Google Scholar 

  52. Lee JS, Choi KH, Do GH et al (2004) Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 93:1638–1646. https://doi.org/10.1002/app.20602

    Article  CAS  Google Scholar 

  53. Fadil F, Adli FA, Affandi NDN et al (2020) Dope-dyeing of polyvinyl alcohol (PVA) nanofibres with remazol yellow FG. Polymers (Basel) 12:3043. https://doi.org/10.3390/polym12123043

    Article  CAS  PubMed  Google Scholar 

  54. Shi Y, Zhao Y, Li X et al (2018) Enhancement of the mechanical properties and thermostability of poly(vinyl alcohol) nanofibers by the incorporation of sodium chloride. J Appl Polym Sci 135:45981. https://doi.org/10.1002/app.45981

    Article  CAS  Google Scholar 

  55. Rwei S, Huang C-W, Hung C-C (2012) Electrospinning PVA solution-rheology and morphology analyses. Fibers Polym 13:44. https://doi.org/10.1007/s12221-012-0044-9

    Article  CAS  Google Scholar 

  56. Itoh H, Li Y, Chan KHK, Kotaki M (2016) Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polym Bull 73:2761–2777. https://doi.org/10.1007/s00289-016-1620-8

    Article  CAS  Google Scholar 

  57. Medina EF, Arjona SD, Corrales FZ, Borras VA (2013) Morphological and mechanical response characterization of nanofiber aggregates of PVA produced by electrospinning sol–gel process. Dyna 80(178):109–114

    Google Scholar 

  58. Alwan TJ, Toma ZA, Kudhier MA, Ziadan KM (2016) Preparation and characterization of the PVA nanofibers produced by electrospinning. Madridge J Nanotechnol Nanosci 1:1–3. https://doi.org/10.18689/mjnn-1000101

    Article  Google Scholar 

  59. Mahmud MM, Perveen A, Matin MA, Arafat MT (2018) Effects of binary solvent mixtures on the electrospinning behavior of poly(vinyl alcohol). Mater Res Express 5:115407. https://doi.org/10.1088/2053-1591/aadf1f

    Article  CAS  ADS  Google Scholar 

  60. Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161:929–930. https://doi.org/10.1038/161929a0

    Article  CAS  ADS  Google Scholar 

  61. International organization for standardization (2018) International standard ISO 527-3:2018, plastics—determination of tensile properties—part 3: test conditions for films and sheets. International organization for standardization

  62. Dahl PL (1982) A viscous friction model. A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering, California State University

  63. Madhlopa A (2022) Hydrodynamics of solar receivers. In: Solar receivers for thermal power generation. Elsevier, pp 213–250. ISBN 978-0-323-85271-5. https://doi.org/10.1016/B978-0-323-85271-5.00008-2

  64. Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2004) Process fluids for abrasive machining. In: Tribology of abrasive machining processes. Elsevier, pp 531–585. ISBN 9780815519386

  65. Gao H, He J, Yang R, Yang L (2010) Characteristic rheological features of high concentration PVA solutions in water with different degrees of polymerization. J Appl Polym Sci 116(5):2734–2741. https://doi.org/10.1002/app.31900

    Article  CAS  Google Scholar 

  66. Briscoe B, Luckham P, Zhu S (2000) The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions. Polymer (Guildf) 41:3851–3860. https://doi.org/10.1016/S0032-3861(99)00550-9

    Article  CAS  Google Scholar 

  67. Song SI, Kim BC (2004) Characteristic rheological features of PVA solutions in water-containing solvents with different hydration states. Polymer (Guildf) 45:2381–2386. https://doi.org/10.1016/j.polymer.2004.01.057

    Article  CAS  Google Scholar 

  68. Marten FL (2002) Vinyl alcohol polymers. In: Encyclopedia of polymer science and technology. Wiley, Hoboken, NJ, Print ISBN: 9781118633892. Online ISBN: 9780471440260. https://doi.org/10.1002/0471440264

  69. Sawamura S, Yoshimura Y, Kitamura K, Taniguchi Y (1992) Effects of pressure, temperature, and concentration on the viscosity of an aqueous solution of sodium chloride. J Phys Chem 96:5526–5529. https://doi.org/10.1021/j100192a063

    Article  CAS  Google Scholar 

  70. Finch CA (1973) Polyvinyl alcohol; properties and applications. Wiley, Chichester

    Google Scholar 

  71. Maeda H, Kawai T, Sekii S (1959) Intra- and intermolecular hydrogen bonds in polyvinyl alcohol solutions. J Polym Sci 35:288–292. https://doi.org/10.1002/pol.1959.1203512831

    Article  CAS  ADS  Google Scholar 

  72. Phachamud Th, Phiriyawirut M (2011) Physical properties of polyvinyl alcohol electrospun fiber mat. Res J Pharm Biol Chem Sci 2:675–684

    CAS  Google Scholar 

  73. Lebedeva AV, Nhung VTH, Olekhnovich RO et al (2022) Investigation of the fabrication of nanofibers from aqueous polyvinyl alcohol solutions by electrospinning. Proc VSUET 84:210–220. https://doi.org/10.20914/2310-1202-2022-2-210-220

    Article  Google Scholar 

  74. Polyvinyl alcohol (PVA)—61st joint FAO/WHO expert committee on food additives (JECFA) meeting—chemical and technical assessment (CTA) (2003)

  75. der Lösungen ZT (1887) Zur Theorie der Lösungen, pp 17–18

  76. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 42:261–272. https://doi.org/10.1016/S0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  77. Ni Q, Ye W, Du M et al (2022) Effect of hydrogen bonding on dynamic rheological behavior of pva aqueous solution. Gels 8:518. https://doi.org/10.3390/gels8080518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xiansu C, Huaimin G, Yingcao S, Jiafang W (2001) Inclusion compound of poly(vinyl alcohol) with multivalent molybdenum coordination compound. J Inorg Organomet Polym Mater 11:235–245. https://doi.org/10.1023/A:1020516511165

    Article  Google Scholar 

  79. Wendorff J, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications. Wiley, Weinheim. https://doi.org/10.1002/9783527647705

    Book  Google Scholar 

  80. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  81. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 46:5670–5703. https://doi.org/10.1002/anie.200604646

    Article  CAS  PubMed  Google Scholar 

  82. Senthamizhan A, Balusamy B, Uyar T (2017) Electrospinning. In: Electrospun materials for tissue engineering and biomedical applications. Elsevier, pp 3–41. https://doi.org/10.1016/B978-0-08-101022-8.00001-6

  83. Burke J (1984) Solubility parameters: theory and application. The book and paper group of the american institute for conservation

  84. Tretinnikov ON, Zagorskaya SA (2012) Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. J Appl Spectrosc 79:521–526. https://doi.org/10.1007/s10812-012-9634-y

    Article  CAS  ADS  Google Scholar 

  85. Hu S, Tsuji M, Horiit F (1994) Phase structure of poly(vinyl alcohol) single crystals as revealed by high-resolution solid-state 13C n.m.r, spectroscopy. Polymer 35(12):2516–2522. https://doi.org/10.1016/0032-3861(94)90372-7

    Article  CAS  Google Scholar 

  86. Anicuta S, Dobre L, Stroescu M, Jipa I (2010) Fourier transform infrared (FTIR) spectroscopy for characterization of antimicrobial films containing chitosan. Analele Universitatii din Oradea Fascicula: Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentara, pp 1234–1240

  87. Wu J, Wang N, Wang L et al (2012) Unidirectional water-penetration composite fibrous film via electrospinning. Soft Matter 8:5996–5999. https://doi.org/10.1039/C2SM25514F

    Article  CAS  ADS  Google Scholar 

  88. Aruan N, Sriyanti I, Edikresnha D et al (2017) Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Procedia Eng 170:31–35. https://doi.org/10.1016/j.proeng.2017.03.006

    Article  CAS  Google Scholar 

  89. Otsuka E, Komiya S, Sasaki S et al (2012) Effects of preparation temperature on swelling and mechanical properties of PVA cast gels. Soft Matter 8:8129. https://doi.org/10.1039/c2sm25513h

    Article  CAS  ADS  Google Scholar 

  90. Otsuka E, Suzuki A (2009) A simple method to obtain a swollen PVA gel crosslinked by hydrogen bonds. J Appl Polym Sci 114:10–16. https://doi.org/10.1002/app.30546

    Article  CAS  Google Scholar 

  91. Nagara Y, Nakano T, Okamoto Y et al (2001) Properties of highly syndiotactic poly(vinyl alcohol). Polymer (Guildf) 42:9679–9686. https://doi.org/10.1016/S0032-3861(01)00493-1

    Article  CAS  Google Scholar 

  92. Uda A, Morita S, Ozaki Y (2013) Thermal degradation of a poly(vinyl alcohol) film studied by multivariate curve resolution analysis. Polymer (Guildf) 54:2130–2137. https://doi.org/10.1016/j.polymer.2013.02.030

    Article  CAS  Google Scholar 

Download references

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Hong Nhung Vu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.H.N., Morozkina, S.N., Sitnikova, V.E. et al. The influence of acetic acid and ethanol on the fabrication and properties of poly(vinyl alcohol) nanofibers produced by electrospinning. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05168-2

Keywords

Navigation